login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308492
Expansion of Sum_{i>=1} mu(i) * x^i * Product_{j>=1} (1 - x^(i*j))^24.
0
1, -25, 251, -1448, 4829, -6275, -16745, 85952, -113895, -120725, 534611, -363448, -577739, 418625, 1212079, 902656, -6905935, 2847375, 10661419, -6992392, -4202995, -13365275, 18643271, 21573952, -25504055, 14443475, -73165437, 24246760, 128406629, -30301975
OFFSET
1,2
COMMENTS
Moebius transform of A000594.
LINKS
Eric Weisstein's World of Mathematics, Tau Function
FORMULA
a(n) = Sum_{d|n} mu(n/d)*A000594(d).
EXAMPLE
G.f. = x - 25*x^2 + 251*x^3 - 1448*x^4 + 4829*x^5 - 6275*x^6 - 16745*x^7 + 85952*x^8 - 113895*x^9 - 120725*x^10 + ...
MATHEMATICA
nmax = 30; CoefficientList[Series[Sum[MoebiusMu[i] x^i Product[(1 - x^(i j))^24, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
a[n_] := Sum[MoebiusMu[n/d] RamanujanTau[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}]
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*ramanujantau(d)); \\ Michel Marcus, Jun 01 2019
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, May 31 2019
STATUS
approved