login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034778
Dirichlet convolution of Ramanujan numbers (A000594) with themselves.
3
1, -48, 504, -2368, 9660, -24192, -33488, 239616, -163782, -463680, 1069224, -1193472, -1155476, 1607424, 4868640, 86016, -13811868, 7861536, 21322840, -22874880, -16877952, -51322752, 37286544, 120766464, -27669550, 55462848, -203834232
OFFSET
1,2
COMMENTS
Multiplicative because A000594 is. - Christian G. Bower, May 16 2005
LINKS
FORMULA
a(n) = Sum_{d|n} tau(d)tau(n/d) where tau(n) = A000594(n) is Ramanujan's tau function.
EXAMPLE
G.f. = x - 48*x^2 + 504*x^3 - 2368*x^4 + 9660*x^5 - 24192*x^6 - 33488*x^7 + ...
MATHEMATICA
a[n_] := DivisorSum[n, RamanujanTau[#]*RamanujanTau[n/#]&]; Array[a, 30] (* Jean-François Alcover, Nov 14 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, A = Vec( eta(x + x^n*O(x))^24); sumdiv(n, d, A[d] * A[n/d]))}; /* Michael Somos, Jul 16 2004 */
(Perl) use ntheory ":all"; for my $n (1..50) { say divisor_sum($n, sub { my $d=shift; ramanujan_tau($d)*ramanujan_tau($n/$d) } # Dana Jacobsen, Sep 05 2015
CROSSREFS
Cf. A000594.
Sequence in context: A168351 A198398 A211149 * A060674 A233165 A247743
KEYWORD
sign,mult
STATUS
approved