login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368890
a(n) = Sum_{k=0..floor(n/2)} n^(3*(n-2*k)) * binomial(n-k,k).
0
1, 1, 65, 19737, 16789505, 30525391000, 101570840860033, 558574349855881107, 4722492584690006360065, 58150612359276833311664895, 1000009000028000035000015000001, 23225285520096132372224712190010064, 708804486128121003209727133170234347521
OFFSET
0,3
FORMULA
a(n) = [x^n] 1/(1 - n^3*x - x^2).
a(n) ~ n^(3*n). - Vaclav Kotesovec, Jan 09 2024
MATHEMATICA
Join[{1}, Table[n^(3*n) * Hypergeometric2F1[1/2 - n/2, -n/2, -n, -4/n^6], {n, 1, 15}]] (* Vaclav Kotesovec, Jan 09 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\2, n^(3*(n-2*k))*binomial(n-k, k));
CROSSREFS
Cf. A368889.
Sequence in context: A323316 A120801 A308697 * A283580 A355496 A308491
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 09 2024
STATUS
approved