login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368891
a(n) = Sum_{k=0..floor(n/3)} n^k * binomial(n-2*k,k).
5
1, 1, 1, 4, 9, 16, 61, 183, 433, 1603, 5581, 15951, 59449, 225928, 738893, 2827321, 11387617, 41174086, 163185805, 686315474, 2680560361, 11035625413, 48086847117, 199640217719, 853587430801, 3836667616201, 16739402030989, 74206353913480
OFFSET
0,4
FORMULA
a(n) = [x^n] 1/(1 - x - n*x^3).
a(n) ~ exp(n^(2/3)/3 + n^(1/3)/18) * n^(n/3) / 3 * (1 + 2/(3*n^(1/3)) + 2/(9*n^(2/3))). - Vaclav Kotesovec, Jan 09 2024
MATHEMATICA
Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2 - n/2, -n/2}, -27*n/4], {n, 0, 30}] (* Vaclav Kotesovec, Jan 09 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\3, n^k*binomial(n-2*k, k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 09 2024
STATUS
approved