OFFSET
1,3
COMMENTS
This A023110 = A031149^2 is the base 10 version of A001541^2 = A055792 (base 2), A001075^2 = A055793 (base 3), A004275^2 = A055808 (base 4), A204520^2 = A055812 (base 5), A204518^2 = A055851 (base 6), A204516^2 = A055859 (base 7), A204514^2 = A055872 (base 8) and A204502^2 = A204503 (base 9). - M. F. Hasler, Sep 28 2014
For the first 4 terms the square has only one digit. It is understood that deleting this digit yields 0. - Colin Barker, Dec 31 2017
REFERENCES
R. K. Guy, Neg and Reg, preprint, Jan 2012.
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..70 (terms 1..38 from David W. Wilson, terms 39..40 from Robert G. Wilson v, terms 41..67 from Dmitry Petukhov)
M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
Joshua Stucky, Pell's Equation and Truncated Squares, Number Theory Seminar, Kansas State University, Feb 19 2018.
FORMULA
Appears to satisfy a(n)=1444*a(n-7)+a(n-14)-76*sqrt(a(n-7)*a(n-14)) for n >= 16. For n = 15, 14, 13, ... this would require a(1) = 16, a(0) = 49, a(-1) = 169, ... - Henry Bottomley, May 08 2001; edited by Robert Israel, Sep 28 2014
a(n) = A031149(n)^2. - M. F. Hasler, Sep 28 2014
Conjectures from Colin Barker, Dec 31 2017: (Start)
G.f.: x^2*(1 + 4*x + 9*x^2 + 16*x^3 + 49*x^4 + 169*x^5 + 256*x^6 - 1082*x^7 - 4328*x^8 - 9738*x^9 - 4592*x^10 - 6698*x^11 - 6698*x^12 - 4592*x^13 + 361*x^14 + 1444*x^15 + 3249*x^16 + 256*x^17 + 169*x^18 + 49*x^19 + 16*x^20) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 1442*x^7 + x^14)).
a(n) = 1443*a(n-7) - 1443*a(n-14) + a(n-21) for n>22.
(End)
MAPLE
count:= 1: A[1]:= 0:
for n from 0 while count < 35 do
for t in [1, 4, 6, 9] do
if issqr(10*n^2+t) then
count:= count+1;
A[count]:= 10*n^2+t;
fi
od
od:
seq(A[i], i=1..count); # Robert Israel, Sep 28 2014
MATHEMATICA
fQ[n_] := IntegerQ@ Sqrt@ Quotient[n^2, 10]; Select[ Range@ 1000000, fQ]^2 (* Robert G. Wilson v, Jan 15 2011 *)
PROG
(PARI) for(n=0, 1e7, issquare(n^2\10) & print1(n^2", ")) \\ M. F. Hasler, Jan 16 2012
CROSSREFS
Cf. A023111.
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
More terms from M. F. Hasler, Jan 16 2012
STATUS
approved