login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares which remain squares when the last digit is removed.
30

%I #83 Oct 28 2023 02:26:25

%S 0,1,4,9,16,49,169,256,361,1444,3249,18496,64009,237169,364816,519841,

%T 2079364,4678569,26666896,92294449,341991049,526060096,749609641,

%U 2998438564,6746486769,38453641216,133088524969,493150849009,758578289296,1080936581761

%N Squares which remain squares when the last digit is removed.

%C This A023110 = A031149^2 is the base 10 version of A001541^2 = A055792 (base 2), A001075^2 = A055793 (base 3), A004275^2 = A055808 (base 4), A204520^2 = A055812 (base 5), A204518^2 = A055851 (base 6), A204516^2 = A055859 (base 7), A204514^2 = A055872 (base 8) and A204502^2 = A204503 (base 9). - _M. F. Hasler_, Sep 28 2014

%C For the first 4 terms the square has only one digit. It is understood that deleting this digit yields 0. - _Colin Barker_, Dec 31 2017

%D R. K. Guy, Neg and Reg, preprint, Jan 2012.

%H Jon E. Schoenfield, <a href="/A023110/b023110.txt">Table of n, a(n) for n = 1..70</a> (terms 1..38 from David W. Wilson, terms 39..40 from Robert G. Wilson v, terms 41..67 from Dmitry Petukhov)

%H M. F. Hasler, <a href="/wiki/M._F._Hasler/Truncated_squares">Truncated squares</a>, OEIS wiki, Jan 16 2012

%H Joshua Stucky, <a href="https://www.math.ksu.edu/~jstucky95/papers/Pell&#39;s%20Equation%20and%20Truncated%20Squares.pdf">Pell's Equation and Truncated Squares</a>, Number Theory Seminar, Kansas State University, Feb 19 2018.

%H <a href="/index/Sq#sqtrunc">Index to sequences related to truncating digits of squares</a>.

%F Appears to satisfy a(n)=1444*a(n-7)+a(n-14)-76*sqrt(a(n-7)*a(n-14)) for n >= 16. For n = 15, 14, 13, ... this would require a(1) = 16, a(0) = 49, a(-1) = 169, ... - _Henry Bottomley_, May 08 2001; edited by _Robert Israel_, Sep 28 2014

%F a(n) = A031149(n)^2. - _M. F. Hasler_, Sep 28 2014

%F Conjectures from _Colin Barker_, Dec 31 2017: (Start)

%F G.f.: x^2*(1 + 4*x + 9*x^2 + 16*x^3 + 49*x^4 + 169*x^5 + 256*x^6 - 1082*x^7 - 4328*x^8 - 9738*x^9 - 4592*x^10 - 6698*x^11 - 6698*x^12 - 4592*x^13 + 361*x^14 + 1444*x^15 + 3249*x^16 + 256*x^17 + 169*x^18 + 49*x^19 + 16*x^20) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 1442*x^7 + x^14)).

%F a(n) = 1443*a(n-7) - 1443*a(n-14) + a(n-21) for n>22.

%F (End)

%p count:= 1: A[1]:= 0:

%p for n from 0 while count < 35 do

%p for t in [1,4,6,9] do

%p if issqr(10*n^2+t) then

%p count:= count+1;

%p A[count]:= 10*n^2+t;

%p fi

%p od

%p od:

%p seq(A[i],i=1..count); # _Robert Israel_, Sep 28 2014

%t fQ[n_] := IntegerQ@ Sqrt@ Quotient[n^2, 10]; Select[ Range@ 1000000, fQ]^2 (* _Robert G. Wilson v_, Jan 15 2011 *)

%o (PARI) for(n=0,1e7, issquare(n^2\10) & print1(n^2",")) \\ _M. F. Hasler_, Jan 16 2012

%Y Cf. A023111.

%Y Cf. A031150, A053784, A031149, A055792, A055793, A055808, A055812, A055851, A055859, A055872.

%Y Cf. A001541, A001075, A004275, A204520, A204518, A204516, A204514, A204502, A204503.

%K nonn,base

%O 1,3

%A _David W. Wilson_

%E More terms from _M. F. Hasler_, Jan 16 2012