OFFSET
1,3
COMMENTS
Or: Numbers whose square, with its last base-8 digit dropped, is again a square. (Except maybe for the 3 initial terms whose square has only 1 digit in base 8.)
See A204504 for the squares resulting from truncation of a(n)^2, and A204512 for their square roots. - M. F. Hasler, Sep 28 2014
LINKS
M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
FORMULA
G.f. = (x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(1 - 6*x^2 + x^4).
a(n) = sqrt(A055872(n)). - M. F. Hasler, Sep 28 2014
MAPLE
A204514 := proc(n) coeftayl((x^2+2*x^3-3*x^4-6*x^5)/(1-6*x^2+x^4), x=0, n); end proc: seq(A204514(n), n=1..30); # Wesley Ivan Hurt, Sep 28 2014
MATHEMATICA
CoefficientList[Series[(x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(x (1 - 6*x^2 + x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
LinearRecurrence[{0, 6, 0, -1}, {0, 1, 2, 3, 6}, 40] (* Harvey P. Dale, Nov 23 2022 *)
PROG
(PARI) b=8; for(n=0, 1e7, issquare(n^2\b) & print1(n", "))
(PARI) A204514(n)=polcoeff((x + 2*x^2 - 3*x^3 - 6*x^4)/(1 - 6*x^2 + x^4+O(x^(n+!n))), n-1, x)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Jan 15 2012
STATUS
approved