login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204515
a(n) = (2*n)! * (2*n+1)! / ((n+1)^2 * n!^3).
3
1, 3, 40, 1050, 42336, 2328480, 163088640, 13913499600, 1401656256000, 162984589447680, 21497802046156800, 3172717285311974400, 518147911684085760000, 92790773980160256000000, 18083066033253630689280000, 3810158522787893903827200000
OFFSET
0,2
COMMENTS
Central terms of the triangle A247500.
LINKS
G.-N. Han and H. Xiong, Difference operators for partitions and some applications, arXiv preprint arXiv:1508.00772 [math.CO], 2015-2018.
FORMULA
a(n) = A248045(n+1) / (n+1).
MATHEMATICA
Table[((2n)!(2n+1)!)/((n+1)^2 n!^3), {n, 0, 20}] (* Harvey P. Dale, May 17 2019 *)
PROG
(Haskell)
a204515 n = a247500 (2 * n) n
(PARI) a(n) = (2*n)! * (2*n+1)! / ((n+1)^2 * n!^3); \\ Michel Marcus, Feb 03 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 19 2014
STATUS
approved