

A012250


A012249(2n) divided by 2^(2n1).


2



1, 3, 40, 1225, 67956, 5986134, 769550496, 136151219061, 31753157473180, 9445432588519642, 3491687484842443536, 1570713950508131878618, 845034544811095556274280, 535857105694970626486925100, 395590680969537758258609408640, 336386798400777928783348084420365
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS



FORMULA

a(n) = (1/2)*sum(j=0..n, (1)^(j+1)*binomial(2*n+2,j)*(nj+1)^(2*n1)).  Richard Stanley, Mar 31 2013
a(n) ~ 3^(3/2) * 2^(2*n) * n^(2*n2) / exp(2*n).  Vaclav Kotesovec, Oct 07 2021


MAPLE

A012250 := n > 1/2*add((1)^(j+1)*binomial(2*n+2, j)*(nj+1)^(2*n1)*(2*j2*n1), j=0..n); seq(A012250(i), i=1..9); # Peter Luschny, Mar 03 2013


MATHEMATICA

Table[Sum[(1)^(j + 1)*Binomial[2*n + 2, j]*(n  j + 1)^(2*n  1)/2, {j, 0, n}], {n, 15}] (* Wesley Ivan Hurt, Nov 11 2014 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS

Edited and extended using Richard Stanley's formula.  N. J. A. Sloane, Jun 10 2013


STATUS

approved



