The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A012250 A012249(2n) divided by 2^(2n-1). 2
 1, 3, 40, 1225, 67956, 5986134, 769550496, 136151219061, 31753157473180, 9445432588519642, 3491687484842443536, 1570713950508131878618, 845034544811095556274280, 535857105694970626486925100, 395590680969537758258609408640, 336386798400777928783348084420365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..16. M. Hering, B. Howard, The ring of evenly weighted points on the line, arXiv:1211.3941 [math.AG], 2012-2014, see p. 8. B. Howard, J. Millson, A. Snowden, R. Vakil, The moduli space of n points on the line is cut out by simple quadrics when n is not six, p. 12. Richard Stanley, Access to a preprint by D. N. Verma. R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, see Theorem 4.6. R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, arXiv:1305.6083 [math.CO], 2013, see Theorem 4.6 and Remark 4.7. R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, European Journal of Combinatorics, Volume 49, October 2015, Pages 194-202. D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - N. J. A. Sloane, Oct 04 2021] FORMULA a(n) = (1/2)*sum(j=0..n, (-1)^(j+1)*binomial(2*n+2,j)*(n-j+1)^(2*n-1)). - Richard Stanley, Mar 31 2013 a(n) ~ 3^(3/2) * 2^(2*n) * n^(2*n-2) / exp(2*n). - Vaclav Kotesovec, Oct 07 2021 MAPLE A012250 := n -> 1/2*add((-1)^(j+1)*binomial(2*n+2, j)*(n-j+1)^(2*n-1)*(2*j-2*n-1), j=0..n); seq(A012250(i), i=1..9); # Peter Luschny, Mar 03 2013 MATHEMATICA Table[Sum[(-1)^(j + 1)*Binomial[2*n + 2, j]*(n - j + 1)^(2*n - 1)/2, {j, 0, n}], {n, 15}] (* Wesley Ivan Hurt, Nov 11 2014 *) CROSSREFS Cf. A012249. Sequence in context: A260754 A047799 A204515 * A094330 A110468 A327356 Adjacent sequences: A012247 A012248 A012249 * A012251 A012252 A012253 KEYWORD nonn AUTHOR D n Verma EXTENSIONS Edited and extended using Richard Stanley's formula. - N. J. A. Sloane, Jun 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 01:00 EST 2023. Contains 367565 sequences. (Running on oeis4.)