login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A012250 A012249(2n) divided by 2^(2n-1). 2
1, 3, 40, 1225, 67956, 5986134, 769550496, 136151219061, 31753157473180, 9445432588519642, 3491687484842443536, 1570713950508131878618, 845034544811095556274280, 535857105694970626486925100, 395590680969537758258609408640, 336386798400777928783348084420365 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
M. Hering, B. Howard, The ring of evenly weighted points on the line, arXiv:1211.3941 [math.AG], 2012-2014, see p. 8.
R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, see Theorem 4.6.
R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, arXiv:1305.6083 [math.CO], 2013, see Theorem 4.6 and Remark 4.7.
R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, European Journal of Combinatorics, Volume 49, October 2015, Pages 194-202.
D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - N. J. A. Sloane, Oct 04 2021]
FORMULA
a(n) = (1/2)*sum(j=0..n, (-1)^(j+1)*binomial(2*n+2,j)*(n-j+1)^(2*n-1)). - Richard Stanley, Mar 31 2013
a(n) ~ 3^(3/2) * 2^(2*n) * n^(2*n-2) / exp(2*n). - Vaclav Kotesovec, Oct 07 2021
MAPLE
A012250 := n -> 1/2*add((-1)^(j+1)*binomial(2*n+2, j)*(n-j+1)^(2*n-1)*(2*j-2*n-1), j=0..n); seq(A012250(i), i=1..9); # Peter Luschny, Mar 03 2013
MATHEMATICA
Table[Sum[(-1)^(j + 1)*Binomial[2*n + 2, j]*(n - j + 1)^(2*n - 1)/2, {j, 0, n}], {n, 15}] (* Wesley Ivan Hurt, Nov 11 2014 *)
CROSSREFS
Cf. A012249.
Sequence in context: A260754 A047799 A204515 * A094330 A110468 A327356
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and extended using Richard Stanley's formula. - N. J. A. Sloane, Jun 10 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 01:00 EST 2023. Contains 367565 sequences. (Running on oeis4.)