|
|
A012250
|
|
A012249(2n) divided by 2^(2n-1).
|
|
2
|
|
|
1, 3, 40, 1225, 67956, 5986134, 769550496, 136151219061, 31753157473180, 9445432588519642, 3491687484842443536, 1570713950508131878618, 845034544811095556274280, 535857105694970626486925100, 395590680969537758258609408640, 336386798400777928783348084420365
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/2)*sum(j=0..n, (-1)^(j+1)*binomial(2*n+2,j)*(n-j+1)^(2*n-1)). - Richard Stanley, Mar 31 2013
a(n) ~ 3^(3/2) * 2^(2*n) * n^(2*n-2) / exp(2*n). - Vaclav Kotesovec, Oct 07 2021
|
|
MAPLE
|
A012250 := n -> 1/2*add((-1)^(j+1)*binomial(2*n+2, j)*(n-j+1)^(2*n-1)*(2*j-2*n-1), j=0..n); seq(A012250(i), i=1..9); # Peter Luschny, Mar 03 2013
|
|
MATHEMATICA
|
Table[Sum[(-1)^(j + 1)*Binomial[2*n + 2, j]*(n - j + 1)^(2*n - 1)/2, {j, 0, n}], {n, 15}] (* Wesley Ivan Hurt, Nov 11 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Edited and extended using Richard Stanley's formula. - N. J. A. Sloane, Jun 10 2013
|
|
STATUS
|
approved
|
|
|
|