login
A012248
Expansion of e.g.f. exp(arcsinh(arcsin(x))).
3
1, 1, 1, 1, 1, 9, 49, 225, 897, 11025, 96801, 893025, 6803457, 108056025, 1275363153, 18261468225, 207592347393, 4108830350625, 60889593787713, 1187451971330625, 17888210916886017, 428670161650355625, 7679611833095218545, 189043541287806830625, 3530100224793651058305
OFFSET
0,6
FORMULA
E.g.f.: Q(0)-1, where Q(k) = 2 + arcsin(x)/(1 - arcsin(x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2013
EXAMPLE
1 + x + 1/2!*x^2 + 1/3!*x^3 + 1/4!*x^4 + 9/5!*x^5...
MATHEMATICA
With[{nn=25}, CoefficientList[Series[Exp[ArcSinh[ArcSin[x]]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Nov 02 2020 *)
PROG
(PARI) x = 'x + O('x^30); Vec(serlaplace(exp(asinh(asin(x))))) \\ Michel Marcus, Mar 09 2017
CROSSREFS
Bisections are |A012115(n)| and A001818.
Sequence in context: A027608 A354657 A003297 * A080026 A060867 A192814
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
More terms from Michel Marcus, Mar 09 2017
STATUS
approved