login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080026
Numbers n having exactly one divisor d such that in binary representation d and n/d have the same number of 1's as n.
2
1, 9, 49, 225, 961, 3969, 6241, 8281, 16129, 24649, 25281, 33489, 34969, 65025, 82369, 100489, 101761, 123201, 133225, 140625, 143641, 198025, 261121, 328329, 330625, 405769, 408321, 494209, 540225, 564001, 576081, 582169, 664225, 797449
OFFSET
1,2
COMMENTS
a(n)=m^2 with A000120(m)=A000120(n).
EXAMPLE
6241=79^2: 1100001100001=1001111*1001111, therefore 6241 is a term.
MATHEMATICA
Do[b = Count[ IntegerDigits[n^2, 2], 1]; If[ Count[ IntegerDigits[n, 2], 1] == b, c = 0; d = IntegerDigits[ Divisors[n^2], 2]; l = DivisorSigma[0, n^2]; k = 1; While[ k < Ceiling[l/2], If[Count[d[[k]], 1] == b && Count[d[[l - k + 1]], 1] == b, c++ ]; k++ ]; If[c == 0, Print[n^2]]], {n, 1, 1000}]
dnd1Q[n_]:=Count[Divisors[n], _?(DigitCount[n, 2, 1]==DigitCount[ #, 2, 1] == DigitCount[n/#, 2, 1]&)]==1; Select[Range[800000], dnd1Q] (* Harvey P. Dale, Aug 03 2021 *)
CROSSREFS
A080024(a(n))=1, subsequence of A080025.
Sequence in context: A354657 A003297 A012248 * A060867 A192814 A228018
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 21 2003
EXTENSIONS
More terms from Robert G. Wilson v, Jan 24 2003
STATUS
approved