The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007088 The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2. (Formerly M4679) 723
 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 100111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS List of binary numbers. (This comment is to assist people searching for that particular phrase. - N. J. A. Sloane, Apr 08 2016) Or, numbers that are sums of distinct powers of 10. Or, numbers having only digits 0 and 1 in their decimal representation. Complement of A136399; A064770(a(n)) = a(n). - Reinhard Zumkeller, Dec 30 2007 a(A000290(n)) = A001737(n). - Reinhard Zumkeller, Apr 25 2009 From Rick L. Shepherd, Jun 25 2009: (Start) Nonnegative integers with no decimal digit > 1. Thus nonnegative integers n in base 10 such that kn can be calculated by normal addition (i.e., n + n + ... + n, with k n's (but not necessarily k + k + ... + k, with n k's)) or multiplication without requiring any carry operations for 0 <= k <= 9. (End) For n > 0: A054055(a(n)) = 1. - Reinhard Zumkeller, Apr 25 2012 For n > 1: A257773(a(n)) = 10, numbers that are Belgian-k for k=0..9. - Reinhard Zumkeller, May 08 2015 For any integer n>=0, find the binary representation and then interpret as decimal representation giving a(n). - Michael Somos, Nov 15 2015 N is in this sequence iff A007953(N) = A101337(N). A028897 is a left inverse. - M. F. Hasler, Nov 18 2019 REFERENCES Heinz Gumin, "Herrn von Leibniz' 'Rechnung mit Null und Eins'", Siemens AG, 3. Auflage 1979 -- contains facsimiles of Leibniz's papers from 1679 and 1703. Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991, p. 383. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..32768 (First 8192 terms from Franklin T. Adams-Watters.) Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45. G. W. Leibniz, Explication de l'arithmétique binaire, qui se sert des seuls caractères 0 & 1; avec des remarques sur son utilité, et sur ce qu'elle donne le sens des anciennes figures chinoises de Fohy, Mémoires de l'Académie Royale des Sciences, 1703, pp. 85-89; reprinted in Gumin (1979). N. J. A. Sloane, Table of a(n) for n = 0..1048576 (A large file) R. G. Wilson, V, Letter to N. J. A. Sloane, Sep. 1992 Index entries for sequences related to Most Wanted Primes video Index entries for 10-automatic sequences. Index entries for sequences related to binary expansion of n FORMULA a(n) = Sum_{i=0..m} d(i)*10^i, where Sum_{i=0..m} d(i)*2^i is the base 2 representation of n. a(n) = (1/2)*Sum_{i>=0} (1-(-1)^floor(n/2^i))*10^i. - Benoit Cloitre, Nov 20 2001 a(n) = A097256(n)/9. a(2n) = 10*a(n), a(2n+1) = a(2n)+1. G.f.: 1/(1-x) * Sum_{k>=0} 10^k * x^(2^k)/(1+x^(2^k)) - for sequence as decimal integers. - Franklin T. Adams-Watters, Jun 16 2006 a(n) = Sum_{k>=0} A030308(n,k)*10^k. - Philippe Deléham, Oct 19 2011 a(n) = Sum_{k=0..floor(log_2(n))} floor((Mod(n/2^k, 2)))*(10^k). - José de Jesús Camacho Medina, Jul 24 2014 EXAMPLE a(6)=110 because (1/2)*((1-(-1)^6)*10^0 + (1-(-1)^3)*10^1 + (1-(-1)^1)*10^2) = 10 + 100. G.f. = x + 10*x^2 + 11*x^3 + 100*x^4 + 101*x^5 + 110*x^6 + 111*x^7 + 1000*x^8 + ... MAPLE A007088 := n-> convert(n, binary): seq(A007088(n), n=0..50); # R. J. Mathar, Aug 11 2009 MATHEMATICA Table[ FromDigits[ IntegerDigits[n, 2]], {n, 0, 39}] Table[Sum[ (Floor[( Mod[f/2 ^n, 2])])*(10^n) , {n, 0, Floor[Log[2, f]]}], {f, 1, 100}] (* José de Jesús Camacho Medina, Jul 24 2014 *) FromDigits/@Tuples[{1, 0}, 6]//Sort (* Harvey P. Dale, Aug 10 2017 *) PROG (PARI) {a(n) = subst( Pol( binary(n)), x, 10)}; /* Michael Somos, Jun 07 2002 */ (PARI) {a(n) = if( n<=0, 0, n%2 + 10*a(n\2))}; /* Michael Somos, Jun 07 2002 */ (PARI) a(n)=fromdigits(binary(n), 10) \\ Charles R Greathouse IV, Apr 08 2015 (Haskell) a007088 0 = 0 a007088 n = 10 * a007088 n' + m where (n', m) = divMod n 2 -- Reinhard Zumkeller, Jan 10 2012 (Python) def a(n): return int(bin(n)[2:]) print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 10 2021 CROSSREFS The basic sequences concerning the binary expansion of n are this one, A000120 (Hammingweight: sum of bits), A000788 (partial sums of A120), A000069 (A120 is odd), A001969 (A120 is even), A023416 (number of bits 0), A059015 (partial sums). Bisections A099820 and A099821. Cf. A028897 (convert binary to decimal). Cf. A000042, A007089-A007095, A000695, A005836, A033042-A033052, A159918, A004290, A169965, A169966, A169967, A169964, A204093, A204094, A204095, A097256, A257773, A257770. Sequence in context: A266946 A081551 A257831 * A115848 A136814 A136809 Adjacent sequences: A007085 A007086 A007087 * A007089 A007090 A007091 KEYWORD nonn,base,nice,easy AUTHOR N. J. A. Sloane, Robert G. Wilson v STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 22:25 EDT 2023. Contains 363138 sequences. (Running on oeis4.)