OFFSET
1,2
COMMENTS
a(1)=1, a(2)=2, a(3)=3, for n>3, a(n) = least number which is a unique sum of three distinct earlier terms. Written this way, we see that this is to 3 as Ulam number A002858 is to 2. - Jonathan Vos Post
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. C. Wunderlich, The improbable behavior of Ulam's summation sequence, pp. 249-257 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
R. G. Wilson, V, Letter to N. J. A. Sloane, Sep. 1992
FORMULA
G.f.: (22*x^18 -21*x^17 +x^16 -2*x^13 -7*x^12 -15*x^9 +2*x^8 +2*x^7 -2*x^5 -2*x^4 -x^3 -x^2 -x) / (-x^4+x^3+x-1). Conjectured and verified for n<=1100 - Alois P. Heinz, Jan 04 2011
EXAMPLE
13 through 27 are not in the sequence because of nonuniqueness: 1+3+9=1+2+10=13, 1+3+10=2+3+9=14, 1+2+12=2+3+10=15, 1+6+9=2+3+11=16, 1+7+9=2+6+9=17, 3+6+9=1+6+11=18, 1+6+12=2+6+11=19, 1+9+10=2+6+12=20, 1+9+11=2+9+10=21, 1+10+11=2+9+11=22, 2+9+12=3+9+11=23, 1+11+12=3+9+12=24, 3+10+12=6+9+10=25, 3+11+12=6+9+11=26, 6+9+12=6+10+11=27. - Jonathan Vos Post
MATHEMATICA
Clear[a]; a[n_ /; n <= 3] := n; a[n_] := a[n] = (t = Table[a[i]+a[j]+a[k], {i, 1, n-3}, {j, i+1, n-2}, {k, j+1, n-1}] // Flatten; Complement[Select[t // Tally, #[[2]] == 1&][[All, 1]], Array[a, n-1]] // Sort // First); Array[a, 56] (* Jean-François Alcover, Mar 11 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved