login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133555
Order of A113709(n) among composite positive integers.
1
1, 2, 3, 6, 9, 10, 11, 14, 19, 24, 27, 28, 29, 32, 37, 42, 47, 48, 51, 56, 57, 60, 71, 74, 75, 76, 79, 82, 95, 96, 99, 104, 105, 114, 119, 124, 125, 128, 133, 138, 147, 148, 151, 152, 157, 168, 175, 178, 181, 182, 187, 196, 197, 202, 207, 212, 217, 220, 221, 228, 231
OFFSET
2,2
FORMULA
a(n) = A066246(A113709(n)). - R. J. Mathar, Jan 12 2008
EXAMPLE
The 10th prime - the 9th prime = 29-23 = 6. The integer between 23 and 29 that is divisible by 6 is 24. 24 is the 14th composite, so a(9) = 14.
MAPLE
A113709 := proc(n) local d, a ; d := ithprime(n+1)-ithprime(n) ; for a from ithprime(n)+1 do if a mod d = 0 then RETURN(a) ; fi ; od: end: A066246 := proc(n) local a, i; if n = 1 or isprime(n) then 0 ; else a := 0 ; for i from 4 to n do if not isprime(i) then a := a+1 ; fi ; od: RETURN(a) ; fi ; end: A133555 := proc(n) A066246(A113709(n)) ; end: seq(A133555(n), n=2..80) ; # R. J. Mathar, Jan 12 2008
MATHEMATICA
compositePi[n_] := n - PrimePi[n] - 1;
a[n_] := Module[{p1 = Prime[n], p2 = Prime[n+1], c}, c = SelectFirst[ Range[p1+1, p2-1], Divisible[#, p2-p1]&]; compositePi[c]];
Table[a[n], {n, 2, 62}] (* Jean-François Alcover, Apr 02 2024 *)
CROSSREFS
Sequence in context: A344208 A007086 A047404 * A328727 A032938 A188323
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 25 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 12 2008
STATUS
approved