login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133552
Number of length n binary sequences with at most 4 of every adjacent 6 bits set.
0
1, 2, 4, 8, 16, 31, 57, 109, 209, 401, 769, 1473, 2817, 5391, 10321, 19761, 37834, 72432, 138663, 265455, 508195, 972909, 1862575, 3565778, 6826437, 13068741, 25019217, 47897608, 91696751, 175547250, 336073354, 643389727, 1231726180
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 0, 1, 2, 0, -2, -2, 0, 0, -1, 0, 0, 1).
FORMULA
Conjectures from Colin Barker, Feb 22 2018: (Start)
G.f.: (1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 - 2*x^6 - 3*x^7 - 2*x^8 - x^10 - x^11 + x^13 + x^14) / (1 - x - x^2 - x^3 - x^5 - 2*x^6 + 2*x^8 + 2*x^9 + x^12 - x^15).
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-5) + 2*a(n-6) - 2*a(n-8) - 2*a(n-9) - a(n-12) + a(n-15) for n>14.
(End)
MATHEMATICA
CoefficientList[Series[(1+x+x^2+x^3+2x^4+2x^5-2x^6-3x^7-2x^8-x^10-x^11+x^13+x^14)/(1-x-x^2-x^3-x^5-2x^6+2x^8+2x^9+x^12-x^15), {x, 0, 50}], x] (* or *) LinearRecurrence[ {1, 1, 1, 0, 1, 2, 0, -2, -2, 0, 0, -1, 0, 0, 1}, {1, 2, 4, 8, 16, 31, 57, 109, 209, 401, 769, 1473, 2817, 5391, 10321}, 50] (* Harvey P. Dale, Aug 14 2023 *)
CROSSREFS
Sequence in context: A325749 A056183 A000127 * A174439 A000128 A106399
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 24 2007
STATUS
approved