login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133553
E.g.f. satisfies: A(x) = x*(sec(exp(A(x))-1)).
1
0, 1, 0, 3, 12, 120, 1290, 17409, 277592, 5083659, 105675030, 2452220144, 62891640900, 1766131052829, 53900956145218, 1776400037307315, 62874491729108656, 2378684861565934468, 95790461019732936558
OFFSET
0,4
LINKS
FORMULA
a(n) ~ n^(n-1) * s / (exp(n) * r^n * sqrt(1+s+(exp(2*s)*s^4)/r^2)), where r = 0.4099354376925387635... and s = 0.5741930515285908458... are roots of the system of equations s*cos(1-exp(s)) = r, 1 + exp(s)*s*tan(1-exp(s)) = 0. - Vaclav Kotesovec, Jul 16 2014
MAPLE
A:= proc(n) option remember; if n=0 then 0 else convert (series (x* (sec (exp(A(n-1))-1)), x=0, n+1), polynom) fi end: a:= n-> coeff (A(n), x, n)*n!: seq (a(n), n=0..24);
MATHEMATICA
CoefficientList[InverseSeries[Series[x*Cos[1 - E^x], {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 16 2014 *)
CROSSREFS
Sequence in context: A194506 A280458 A294198 * A010571 A280248 A067124
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved