The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294198 Labeled trees on n nodes with at least one node of degree two. 1
0, 0, 3, 12, 120, 1200, 16380, 255696, 4726008, 99107280, 2346042600, 61706210280, 1788467429892, 56618211155688, 1944581982268380, 72019509651227040, 2861473883255362800, 121414006972684901664, 5479661140682410928592, 262122044885503316203320 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
a(n) = (n-2)!*Sum_{q=1..n-2} C(n,q)*(-1)^(q+1)*(n-q)^(n-2-q)/(n-2-q)! where n >= 2.
EXAMPLE
When n=4 there are two types of trees: paths (24!/2 trees) or a star (4 trees) for a total of 4^(4-2) trees. Of these only the paths contain a vertex of degree 2 (2 in fact). When n=5 there are three types of trees: paths (5!/2 trees), a star (5 trees) or a fork (C(5,1) x C(4, 2) x 2) for a total of 5^(5-2) trees. Of these only the paths and the fork contain a vertex of degree 2.
MATHEMATICA
a[1] = 0; a[n_] := (n-2)! Sum[Binomial[n, q] (-1)^(q+1) (n-q)^(n-2-q) / (n-2-q)!, {q, 1, n-2}]; Array[a, 20] (* Jean-François Alcover, Feb 15 2018 *)
CROSSREFS
Sequence in context: A359658 A194506 A280458 * A133553 A010571 A280248
KEYWORD
nonn
AUTHOR
Marko Riedel, Feb 11 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 11:51 EDT 2024. Contains 373407 sequences. (Running on oeis4.)