login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A(x) = x*(sec(exp(A(x))-1)).
1

%I #8 Jul 16 2014 16:52:57

%S 0,1,0,3,12,120,1290,17409,277592,5083659,105675030,2452220144,

%T 62891640900,1766131052829,53900956145218,1776400037307315,

%U 62874491729108656,2378684861565934468,95790461019732936558

%N E.g.f. satisfies: A(x) = x*(sec(exp(A(x))-1)).

%H Alois P. Heinz, <a href="/A133553/b133553.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) ~ n^(n-1) * s / (exp(n) * r^n * sqrt(1+s+(exp(2*s)*s^4)/r^2)), where r = 0.4099354376925387635... and s = 0.5741930515285908458... are roots of the system of equations s*cos(1-exp(s)) = r, 1 + exp(s)*s*tan(1-exp(s)) = 0. - _Vaclav Kotesovec_, Jul 16 2014

%p A:= proc(n) option remember; if n=0 then 0 else convert (series (x* (sec (exp(A(n-1))-1)), x=0, n+1), polynom) fi end: a:= n-> coeff (A(n), x, n)*n!: seq (a(n), n=0..24);

%t CoefficientList[InverseSeries[Series[x*Cos[1 - E^x],{x,0,20}],x],x] * Range[0,20]! (* _Vaclav Kotesovec_, Jul 16 2014 *)

%K nonn

%O 0,4

%A _Alois P. Heinz_, Aug 27 2008