login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174439
Partial sums of A001523.
2
1, 2, 4, 8, 16, 31, 58, 105, 184, 314, 523, 853, 1365, 2149, 3332, 5097, 7701, 11505, 17009, 24907, 36147, 52027, 74304, 105352, 148355, 207575, 288673, 399157, 548926, 750996, 1022400, 1385374, 1868813, 2510181, 3357862, 4474187, 5939186
OFFSET
0,2
COMMENTS
The subsequence of primes begins: 2, 31, 523, 853, 24907, 52027, 1868813, ...
LINKS
FORMULA
a(n) = Sum_{i=0..n} A001523(i).
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*Pi*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Dec 13 2015
MATHEMATICA
nmax = 41; A001523 = CoefficientList[Series[1 + Sum[(-1)^(k + 1)*x^(k*(k + 1)/2), {k, 1, nmax}] / QPochhammer[x]^2, {x, 0, nmax}], x]; s = 0; Table[s = s + A001523[[k]], {k, 1, nmax}] (* Vaclav Kotesovec, Dec 13 2015 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 19 2010
STATUS
approved