login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100506
Bisection of A001523.
4
1, 4, 15, 47, 130, 330, 784, 1765, 3804, 7898, 15880, 31048, 59220, 110484, 202070, 362974, 641368, 1116325, 1916184, 3247088, 5436972, 9002752, 14752316, 23938188, 38487496, 61344055, 96974176, 152110204, 236837795, 366177506, 562373990, 858193804, 1301654610
OFFSET
0,2
LINKS
MAPLE
seq(coeff(convert(series(add(-(-1)^k*x^(k*(k+1)/2), k=1..100)/(mul(1-x^k, k=1..100))^2, x, 100), polynom), x, 2*n+1), n=0..45); # (C. Ronaldo)
# second Maple program:
b:= proc(n, i) option remember;
`if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
add(b(n-i*j, i+1)*(j+1), j=0..n/i))
end:
a:= n-> `if`(n=0, 1, b(2*n+1, 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
MATHEMATICA
b[n_, i_]:= b[n, i]= If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i + 1]*(j+1), {j, 0, n/i}]];
a[n_]:= If[n==0, 1, b[2*n+1, 1]];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 18 2018, after Alois P. Heinz *)
PROG
(Magma)
m:=200;
R<x>:=PowerSeriesRing(Integers(), m);
b:= Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) ));
A100506:= func< n | b[2*n+2] >;
[A100506(n): n in [0..80]]; // G. C. Greubel, Apr 03 2023
(SageMath)
@CachedFunction
def b(n, k): # Indranil Ghosh's code of A001523
if k>n: return 0
if n%k==0: x=1
else: x=0
return x + sum(b(n-k*j, k+1)*(j+1) for j in range(n//k + 1))
def A100506(n): return 1 if n==0 else b(2*n+1, 1)
[A100506(n) for n in range(41)] # G. C. Greubel, Apr 03 2023
CROSSREFS
Cf. A001523.
Sequence in context: A195688 A111038 A188716 * A173414 A307075 A219903
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 24 2004
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
STATUS
approved