login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bisection of A001523.
4

%I #19 Apr 03 2023 14:25:58

%S 1,4,15,47,130,330,784,1765,3804,7898,15880,31048,59220,110484,202070,

%T 362974,641368,1116325,1916184,3247088,5436972,9002752,14752316,

%U 23938188,38487496,61344055,96974176,152110204,236837795,366177506,562373990,858193804,1301654610

%N Bisection of A001523.

%H Alois P. Heinz, <a href="/A100506/b100506.txt">Table of n, a(n) for n = 0..5000</a>

%p seq(coeff(convert(series(add(-(-1)^k*x^(k*(k+1)/2),k=1..100)/(mul(1-x^k,k=1..100))^2,x,100),polynom),x,2*n+1),n=0..45); # (C. Ronaldo)

%p # second Maple program:

%p b:= proc(n, i) option remember;

%p `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+

%p add(b(n-i*j, i+1)*(j+1), j=0..n/i))

%p end:

%p a:= n-> `if`(n=0, 1, b(2*n+1, 1)):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 26 2014

%t b[n_, i_]:= b[n, i]= If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i + 1]*(j+1), {j, 0, n/i}]];

%t a[n_]:= If[n==0, 1, b[2*n+1, 1]];

%t Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Jun 18 2018, after _Alois P. Heinz_ *)

%o (Magma)

%o m:=200;

%o R<x>:=PowerSeriesRing(Integers(), m);

%o b:= Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) ));

%o A100506:= func< n | b[2*n+2] >;

%o [A100506(n): n in [0..80]]; // _G. C. Greubel_, Apr 03 2023

%o (SageMath)

%o @CachedFunction

%o def b(n, k): # Indranil Ghosh's code of A001523

%o if k>n: return 0

%o if n%k==0: x=1

%o else: x=0

%o return x + sum(b(n-k*j, k+1)*(j+1) for j in range(n//k + 1))

%o def A100506(n): return 1 if n==0 else b(2*n+1, 1)

%o [A100506(n) for n in range(41)] # _G. C. Greubel_, Apr 03 2023

%Y Cf. A001523.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 24 2004

%E More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005