login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188716
a(n) = n + (n-1)*(2^n-2).
3
1, 1, 4, 15, 46, 125, 316, 763, 1786, 4089, 9208, 20471, 45046, 98293, 212980, 458739, 983026, 2097137, 4456432, 9437167, 19922926, 41943021, 88080364, 184549355, 385875946, 805306345, 1677721576, 3489660903, 7247757286, 15032385509, 31138512868, 64424509411, 133143986146, 274877906913, 566935683040, 1168231104479
OFFSET
0,3
COMMENTS
Number of elements in the semigroup IDT_n.
FORMULA
From Colin Barker, Apr 06 2012: (Start)
a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4).
G.f.: (1-5*x+11*x^2-8*x^3)/((1-x)^2*(1-2*x)^2). (End)
a(n) = A000337(n) - (n-1). - Andrew Penland , Mar 24 2016
E.g.f.: exp(x)*(2 - x + exp(x)*(2*x - 1)). - Stefano Spezia, Apr 10 2022
MATHEMATICA
Table[n+(n-1)(2^n-2), {n, 0, 40}] (* or *) LinearRecurrence[{6, -13, 12, -4}, {1, 1, 4, 15}, 40] (* Harvey P. Dale, Aug 03 2024 *)
PROG
(Magma) [n + (n-1)*(2^n-2): n in [0..50]]; // Vincenzo Librandi, May 01 2011
(PARI) a(n)=(n-1)<<n-n+2 \\ Charles R Greathouse IV, Apr 06 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Adeniji, Adenike and Samuel Makanjuola (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011
EXTENSIONS
Edited by N. J. A. Sloane, Apr 23 2011
Offset changed from 1 to 0 by Vincenzo Librandi, May 01 2011
STATUS
approved