login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188947
a(n) = n^3 - 2*n^2 + 2*n + 1.
6
2, 5, 16, 41, 86, 157, 260, 401, 586, 821, 1112, 1465, 1886, 2381, 2956, 3617, 4370, 5221, 6176, 7241, 8422, 9725, 11156, 12721, 14426, 16277, 18280, 20441, 22766, 25261, 27932, 30785, 33826, 37061, 40496, 44137, 47990, 52061, 56356, 60881, 65642, 70645
OFFSET
1,1
COMMENTS
The original definition was "Identity difference partial one - one transformation semigroup is a semigroup having the property that the difference between max im(alpha) and min im(alpha) is not greater than 1. This is denoted by S = IDI_n for each n." [Needs editing.]
For all n >= 3, a(n) expressed in base n has the three digits n-2, 2, and 1; for example, a(16) in hexadecimal is "E21". For all n >= 3, a(n+1) expressed in base n is "1112". For all n >= 7, a(n+2) expressed in base n is "1465". - Mathew Englander, Jan 07 2021
FORMULA
a(n) = (n+1) + n*(n-1)^2 = n^3 - 2*n^2 + 2*n + 1 = 1 + A053698(n-1).
G.f.: ( -x*(-2 + 3*x - 8*x^2 + x^3) ) / ( (x-1)^4 ). - R. J. Mathar, Apr 14 2011
a(n) = A060354(n) + A162607(n+1). - Lechoslaw Ratajczak, Sep 24 2020
E.g.f.: exp(x)*(1 + x)*(1 + x^2) - 1. - Stefano Spezia, Apr 10 2022
MATHEMATICA
A188947[n_] := n^3 - 2*n^2 + 2*n + 1; Table[A188947[n], {n, 1, 42}] (* Robert P. P. McKone, Jan 31 2021 *)
PROG
(Magma) [n^3 - 2*n^2 + 2*n + 1: n in [1..30]]; // Vincenzo Librandi, May 01 2011
(PARI) a(n)=n^3-2*n^2+2*n+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A027444, A053698, A056106 (first differences), A060354, A162607, A188377, A188716.
Sequence in context: A179992 A054971 A124720 * A076958 A163825 A102866
KEYWORD
nonn,easy
AUTHOR
Adeniji, Adenike, Apr 14 2011
EXTENSIONS
Edited by N. J. A. Sloane, Apr 23 2011
STATUS
approved