OFFSET
0,2
COMMENTS
a(n) = 1111 in base n.
n^3 + n^2 + n + 1 = (n^2 + 1)*(n + 1), therefore a(n) is never prime. - Alonso del Arte, Apr 22 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
For n >= 2, a(n) = (n^4-1)/(n-1) = A024002(n)/A024000(n) = A002522(n)*(n+1) = A002061(n+1) + A000578(n).
G.f.: (1+5*x^2) / (1-x)^4. - Colin Barker, Jan 06 2012
a(n) = -A062158(-n). - Bruno Berselli, Jan 26 2016
a(n) = Sum_{i=0..n} 2*n*(n-i)+1. - Bruno Berselli, Jan 02 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Jan 02 2017
E.g.f.: exp(x)*(x^3+4*x^2+3*x+1). - Nikolaos Pantelidis, Feb 06 2023
EXAMPLE
a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.
a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.
a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
From Bruno Berselli, Jan 02 2017: (Start)
The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):
. 1;
. 3, 1;
. 9, 5, 1;
. 19, 13, 7, 1;
. 33, 25, 17, 9, 1;
. 51, 41, 31, 21, 11, 1;
. 73, 61, 49, 37, 25, 13, 1;
. 99, 85, 71, 57, 43, 29, 15, 1;
. 129, 113, 97, 81, 65, 49, 33, 17, 1;
. 163, 145, 127, 109, 91, 73, 55, 37, 19, 1;
. 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;
...
Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.
(End)
MAPLE
MATHEMATICA
Table[n^3 + n^2 + n + 1, {n, 0, 39}] (* Alonso del Arte, Apr 22 2014 *)
FromDigits["1111", Range[0, 50]] (* Paolo Xausa, May 11 2024 *)
PROG
(Magma) [n^3+n^2+n+1: n in [0..50]]; // Vincenzo Librandi, May 01, 2011
(PARI) Vec((1 + 5*x^2) / (1 - x)^4 + O(x^50)) \\ Colin Barker, Jan 02 2017
(Python) def a(n): return (n**3+n**2+n+1) # Torlach Rush, May 08 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Mar 23 2000
STATUS
approved