login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053698 a(n) = n^3 + n^2 + n + 1. 31
1, 4, 15, 40, 85, 156, 259, 400, 585, 820, 1111, 1464, 1885, 2380, 2955, 3616, 4369, 5220, 6175, 7240, 8421, 9724, 11155, 12720, 14425, 16276, 18279, 20440, 22765, 25260, 27931, 30784, 33825, 37060, 40495, 44136, 47989, 52060, 56355, 60880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = 1111 in base n.

n^3 + n^2 + n + 1 = (n^2 + 1)*(n + 1), therefore a(n) is never prime. - Alonso del Arte, Apr 22 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = (n^4-1)/(n-1) = A024002(n)/A024000(n) = A002522(n)*(n+1) = A002061(n+1) + A000578(n).

G.f.: (1+5*x^2) / (1-x)^4. - Colin Barker, Jan 06 2012

a(n) = -A062158(-n). - Bruno Berselli, Jan 26 2016

a(n) = Sum_{i=0..n} 2*n*(n-i)+1. - Bruno Berselli, Jan 02 2017

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Colin Barker, Jan 02 2017

EXAMPLE

a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.

a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.

a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.

From Bruno Berselli, Jan 02 2017: (Start)

The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):

.   1;

.   3,   1;

.   9,   5,   1;

.  19,  13,   7,   1;

.  33,  25,  17,   9,   1;

.  51,  41,  31,  21,  11,   1;

.  73,  61,  49,  37,  25,  13,  1;

.  99,  85,  71,  57,  43,  29, 15,  1;

. 129, 113,  97,  81,  65,  49, 33, 17,  1;

. 163, 145, 127, 109,  91,  73, 55, 37, 19,  1;

. 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;

...

Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.

(End)

MAPLE

A053698:=n->n^3 + n^2 + n + 1; seq(A053698(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2014

MATHEMATICA

Table[n^3 + n^2 + n + 1, {n, 0, 39}] (* Alonso del Arte, Apr 22 2014 *)

PROG

(MAGMA) [n^3+n^2+n+1: n in [0..50]]; // Vincenzo Librandi, May 01, 2011

(PARI) Vec((1 + 5*x^2) / (1 - x)^4 + O(x^50)) \\ Colin Barker, Jan 02 2017

CROSSREFS

Cf. A237627 (subset of semiprimes).

Cf. A062158.

Sequence in context: A062486 A193226 A291555 * A162867 A059140 A031164

Adjacent sequences:  A053695 A053696 A053697 * A053699 A053700 A053701

KEYWORD

nonn,easy

AUTHOR

Henry Bottomley, Mar 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)