login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336971
G.f. A(x) satisfies: A(x) = 1 - x^3 * A(x/(1 - x)) / (1 - x).
2
1, 0, 0, -1, -1, -1, 0, 4, 15, 40, 86, 134, 16, -1060, -6119, -25187, -86678, -250846, -537819, -175233, 6998009, 55632942, 310923272, 1465146781, 6011047682, 20719304348, 49356093300, -36579100806, -1549214884054, -13807417413199, -92912464763743
OFFSET
0,8
LINKS
FORMULA
a(0) = 1, a(1) = a(2) = 0; a(n) = -Sum_{k=0..n-3} binomial(n-3,k) * a(k).
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = 1 - x^3 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 30}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 09 2020
STATUS
approved