login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336973
Sum of the smallest and largest side lengths of all distinct integer-sided triangles with perimeter n.
0
0, 0, 2, 0, 3, 4, 9, 5, 17, 13, 28, 23, 41, 36, 67, 51, 86, 81, 121, 102, 160, 141, 205, 184, 254, 233, 327, 286, 387, 365, 474, 429, 567, 522, 669, 621, 777, 729, 920, 843, 1044, 994, 1206, 1124, 1376, 1294, 1558, 1472, 1748, 1662, 1984, 1860, 2195, 2106, 2455, 2325, 2725, 2595
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * (n - i).
Conjectures from Colin Barker, Aug 10 2020: (Start)
G.f.: x^3*(2 + 2*x + 3*x^2 + 3*x^3 + 5*x^4 + 4*x^5 + 4*x^6) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.
(End)
EXAMPLE
a(3) = 2; There is one integer-sided triangle with perimeter 3, [1,1,1]. The sum of the smallest and largest two side lengths is 1 + 1 = 2.
a(7) = 9; There are two integer-sided triangles with perimeter 7, [1,3,3] and [2,2,3]. The sum of the smallest and largest two side lengths of these triangles is 1 + 3 + 2 + 3 = 9.
MATHEMATICA
Table[Sum[Sum[(n - i)*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 80}]
LinearRecurrence[{-1, 0, 2, 4, 2, -1, -5, -5, -1, 2, 4, 2, 0, -1, -1}, {0, 0, 2, 0, 3, 4, 9, 5, 17, 13, 28, 23, 41, 36, 67}, 60] (* Harvey P. Dale, Sep 22 2024 *)
CROSSREFS
Cf. A005044.
Sequence in context: A110990 A254213 A321171 * A369017 A352846 A035347
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 09 2020
STATUS
approved