login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369017
Triangle read by rows: T(n, k) = binomial(n-1, k-1) * (k - 1)^(k - 1) * k * (n - k + 1)^(n - k - 1).
2
0, 0, 1, 0, 1, 2, 0, 3, 4, 12, 0, 16, 18, 36, 108, 0, 125, 128, 216, 432, 1280, 0, 1296, 1250, 1920, 3240, 6400, 18750, 0, 16807, 15552, 22500, 34560, 57600, 112500, 326592, 0, 262144, 235298, 326592, 472500, 716800, 1181250, 2286144, 6588344
OFFSET
0,6
FORMULA
T = B066320 - A369016 (where B066320 = A066320 after adding a 0-column to the left and then setting offset to (0, 0)).
EXAMPLE
Triangle starts:
[0][0]
[1][0, 1]
[2][0, 1, 2]
[3][0, 3, 4, 12]
[4][0, 16, 18, 36, 108]
[5][0, 125, 128, 216, 432, 1280]
[6][0, 1296, 1250, 1920, 3240, 6400, 18750]
[7][0, 16807, 15552, 22500, 34560, 57600, 112500, 326592]
[8][0, 262144, 235298, 326592, 472500, 716800, 1181250, 2286144, 6588344]
MAPLE
T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k-1):
seq(seq(T(n, k), k = 0..n), n=0..9);
MATHEMATICA
A369017[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k-1);
Table[A369017[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
PROG
(Julia)
T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k-1)
for n in 0:9 (println([T(n, k) for k in 0:n])) end
(PARI) T(n, k) = binomial(n-1, k-1) * (k - 1)^(k - 1) * k * (n - k + 1)^(n - k - 1) \\ Winston de Greef, Jan 27 2024
CROSSREFS
Sequence in context: A254213 A321171 A336973 * A352846 A035347 A094126
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 12 2024
STATUS
approved