login
A369019
Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k).
3
0, 0, 1, 0, 2, 4, 0, 9, 12, 36, 0, 64, 72, 144, 432, 0, 625, 640, 1080, 2160, 6400, 0, 7776, 7500, 11520, 19440, 38400, 112500, 0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144, 0, 2097152, 1882384, 2612736, 3780000, 5734400, 9450000, 18289152, 52706752
OFFSET
0,5
FORMULA
EXAMPLE
Triangle starts:
[0] [0]
[1] [0, 1]
[2] [0, 2, 4]
[3] [0, 9, 12, 36]
[4] [0, 64, 72, 144, 432]
[5] [0, 625, 640, 1080, 2160, 6400]
[6] [0, 7776, 7500, 11520, 19440, 38400, 112500]
[7] [0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144]
MAPLE
T := (n, k) -> binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k):
seq(seq(T(n, k), k = 0..n), n=0..9);
MATHEMATICA
A369019[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k);
Table[A369019[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 27 2024 *)
PROG
(SageMath)
def A369019(n, k):
return binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k)
CROSSREFS
Sequence in context: A021419 A338168 A180192 * A066529 A052080 A261754
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 13 2024
STATUS
approved