login
A369018
Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*n*(n - k + 1)^(n - k).
2
0, 0, 1, 0, 4, 4, 0, 27, 18, 36, 0, 256, 144, 192, 432, 0, 3125, 1600, 1800, 2700, 6400, 0, 46656, 22500, 23040, 29160, 46080, 112500, 0, 823543, 381024, 367500, 423360, 564480, 918750, 2286144, 0, 16777216, 7529536, 6967296, 7560000, 9175040, 12600000, 20901888, 52706752
OFFSET
0,5
FORMULA
EXAMPLE
Triangle read by rows:
[0] [0]
[1] [0, 1]
[2] [0, 4, 4]
[3] [0, 27, 18, 36]
[4] [0, 256, 144, 192, 432]
[5] [0, 3125, 1600, 1800, 2700, 6400]
[6] [0, 46656, 22500, 23040, 29160, 46080, 112500]
[7] [0, 823543, 381024, 367500, 423360, 564480, 918750, 2286144]
MAPLE
T := (n, k) -> binomial(n, k - 1)*(k - 1)^(k - 1)*n*(n - k + 1)^(n - k):
seq(seq(T(n, k), k = 0..n), n=0..9);
MATHEMATICA
A369018[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] n (n-k+1)^(n-k);
Table[A369018[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 27 2024 *)
PROG
(SageMath)
def A369018(n, k):
return binomial(n, k - 1)*(k - 1)^(k - 1)*n*(n - k + 1)^(n - k)
CROSSREFS
Sequence in context: A205507 A137862 A006805 * A030045 A371049 A126089
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 13 2024
STATUS
approved