%I #15 Jan 27 2024 18:48:35
%S 0,0,1,0,2,4,0,9,12,36,0,64,72,144,432,0,625,640,1080,2160,6400,0,
%T 7776,7500,11520,19440,38400,112500,0,117649,108864,157500,241920,
%U 403200,787500,2286144,0,2097152,1882384,2612736,3780000,5734400,9450000,18289152,52706752
%N Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k).
%F T = A369018 - A368849.
%e Triangle starts:
%e [0] [0]
%e [1] [0, 1]
%e [2] [0, 2, 4]
%e [3] [0, 9, 12, 36]
%e [4] [0, 64, 72, 144, 432]
%e [5] [0, 625, 640, 1080, 2160, 6400]
%e [6] [0, 7776, 7500, 11520, 19440, 38400, 112500]
%e [7] [0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144]
%p T := (n, k) -> binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k):
%p seq(seq(T(n, k), k = 0..n), n=0..9);
%t A369019[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k);
%t Table[A369019[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 27 2024 *)
%o (SageMath)
%o def A369019(n, k):
%o return binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k)
%Y Cf. A369018, A368849.
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Jan 13 2024