login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035347
Triangle of a(n,k) = number of minimal covers of an n-set that cover k points of that set uniquely (n >= 1, k >= 1).
8
1, 0, 2, 0, 3, 5, 0, 6, 28, 15, 0, 10, 190, 210, 52, 0, 15, 1340, 3360, 1506, 203, 0, 21, 9065, 60270, 48321, 10871, 877, 0, 28, 57512, 1132880, 1820056, 636300, 80592, 4140, 0, 36, 344316, 21067452, 76834926, 45455676, 8081928, 618939, 21147, 0, 45
OFFSET
1,3
LINKS
T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
FORMULA
a(n, k) = C(n, k)*Sum_{j=1..k} S(k, j)*(2^j-j-1)^(n-k), where S(k, j) are Stirling numbers of the second kind.
E.g.f.: Sum_{k>=1} (exp(y*x) - 1)^k/k! * exp((2^k-k-1)x). - Geoffrey Critzer, Jun 28 2013
EXAMPLE
1; 0,2; 0,3,5; 0,6,28,15; ...
MATHEMATICA
a[n_, k_] := Binomial[n, k] * Sum[ StirlingS2[k, j]*(2^j - j - 1)^(n - k), {j, 1, k}]; a[n_, n_] := Sum[ StirlingS2[n, j], {j, 1, n}]; Flatten[ Table[a[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Jun 26 2012, from formula *)
CROSSREFS
Cf. A056885 for unlabeled case. Row sums give A046165.
Sequence in context: A336973 A369017 A352846 * A094126 A293269 A038072
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from Vladeta Jovovic, Sep 06 2000
STATUS
approved