login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066320
Triangle read by rows: T(n, k) = binomial(n, k)*k^k*(n-k)^(n-k-1) k=0..n-1.
2
1, 2, 2, 9, 6, 12, 64, 36, 48, 108, 625, 320, 360, 540, 1280, 7776, 3750, 3840, 4860, 7680, 18750, 117649, 54432, 52500, 60480, 80640, 131250, 326592, 2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344, 43046721
OFFSET
1,2
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 68 (2.1.43).
FORMULA
E.g.f.: -LambertW(-y)/(1+LambertW(-x*y)). - Vladeta Jovovic, Jan 26 2006
T(n, k) = n*binomial(n-1, k-1)*(k-1)^(k-1)*(n-k+1)^(n-k-1) assuming offset (1, 1). - Peter Luschny, Jan 12 2024
EXAMPLE
Triangle starts:
[1][ 1]
[2][ 2, 2]
[3][ 9, 6, 12]
[4][ 64, 36, 48, 108]
[5][ 625, 320, 360, 540, 1280]
[6][ 7776, 3750, 3840, 4860, 7680, 18750]
[7][ 117649, 54432, 52500, 60480, 80640, 131250, 326592]
[8][2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344]
PROG
(Julia) # Assuming offset (n=1, k=1).
T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k-1)
for n in 1:9 (println([n], [T(n, k) for k in 1:n])) end
# Peter Luschny, Jan 12 2024
CROSSREFS
T = n * A185390 after proper alignment of offsets.
Columns 1, 2: A000169, A055541.
Main diagonal: A055897.
Row sums give A000312.
Sequence in context: A319129 A073315 A298597 * A005168 A256591 A011149
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Dec 13 2001
STATUS
approved