login
A256591
Decimal expansion of Xi''(1/2) = 0.02297..., the second derivative of the Riemann Xi function at 1/2.
0
0, 2, 2, 9, 7, 1, 9, 4, 4, 3, 1, 5, 1, 4, 5, 4, 3, 7, 5, 3, 5, 2, 4, 9, 8, 7, 6, 4, 9, 7, 6, 3, 2, 1, 7, 0, 2, 6, 4, 5, 9, 3, 0, 1, 3, 8, 3, 7, 5, 8, 9, 0, 6, 3, 4, 9, 9, 1, 4, 4, 6, 2, 2, 1, 6, 5, 1, 8, 3, 6, 3, 1, 8, 5, 8, 8, 9, 2, 5, 5, 3, 8, 0, 9, 6, 7, 0, 2, 2, 7, 6, 7, 1, 2, 1, 4, 1, 7, 8, 0, 3, 2, 3
OFFSET
0,2
COMMENTS
As mentioned in the paper by Borwein et al., the Riemann hypothesis is equivalent to a positivity condition on every even-order derivative of the Xi function at the point s = 1/2.
REFERENCES
H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0) pp. 16-18
LINKS
Jonathan M. Borwein, David M. Bradley, Richard E. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics 121 (2000) p. 289.
Eric Weisstein's MathWorld, Xi-Function
FORMULA
Xi(s) = 1/2*s*(s-1)*Pi^(-s/2)*Gamma(s/2)*zeta(s).
Xi''(1/2) = (-(32*Pi^(1/4))^(-1))*Gamma(1/4)*((-32 + (log(Pi) - PolyGamma(1/4))^2 + PolyGamma(1, 1/4))*zeta(1/2) + 4*((-log(Pi) + PolyGamma(1/4))*zeta'(1/2) + zeta''(1/2))).
EXAMPLE
0.022971944315145437535249876497632170264593013837589...
Are also listed in the Borwein paper the Xi derivatives of order 4 and 6:
Xi^(4)(1/2) = 0.002962848433687632165368...
Xi^(6)(1/2) = 0.000599295946597579491843...
MATHEMATICA
d2 = (-(32*Pi^(1/4))^(-1))*Gamma[1/4]*((-32 + (Log[Pi] - PolyGamma[1/4])^2 + PolyGamma[1, 1/4])*Zeta[1/2] + 4*((-Log[Pi] + PolyGamma[1/4])*Zeta'[1/2] + Zeta''[1/2])); Join[{0}, First[RealDigits[d2, 10, 102]]]
CROSSREFS
Cf. A020777 (PolyGamma(1/4)), A059750 (zeta(1/2)), A068466 (Gamma(1/4)), A114720 (Xi(1/2)), A114875 (zeta'(1/2)), A252244 (zeta''(1/2)).
Sequence in context: A298597 A066320 A005168 * A011149 A212990 A220265
KEYWORD
nonn,cons
AUTHOR
STATUS
approved