login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256588
a(n) is the n-th sign-change in the sequence of the constants b(n) defined as the coefficients of a Newton interpolation series associated to zeta(s)-1/(s-1).
1
3, 7, 13, 21, 29, 40, 52, 65, 80, 97, 115, 135, 157, 180, 204, 230, 258, 287, 318, 350, 384, 420, 457, 496, 536, 578, 621, 666, 713, 761, 810, 862, 915, 969, 1025, 1082, 1142, 1202, 1264, 1328, 1394, 1461, 1529, 1599, 1671, 1744, 1819, 1895, 1973
OFFSET
1,1
LINKS
Philippe Flajolet and Linas Vepstas, On Differences of Zeta Values, arXiv:math/0611332 [math.CA] 2007
FORMULA
zeta(s)-1/(s-1) = Sum_{n>=0} (-1)^n*b(n)*binomial(s,n).
b(n) = n*(1-EulerGamma - H(n-1)) - 1/2 + Sum_{k=2..n} binomial(n,k)*(-1)^k*zeta(k), where H(n) is the n-th harmonic number.
EXAMPLE
b(1) = 1/2 - EulerGamma < 0,
b(2) = -1/2 - 2*EulerGamma + Pi^2/6 < 0,
b(3) = -1/2 + 3*(-1/2 - EulerGamma) + Pi^2/2 - zeta(3) > 0, so a(1) = 3.
MATHEMATICA
nmax = 2000; $MaxExtraPrecision = 1000; b[n_] := b[n] = n*(1 - EulerGamma - HarmonicNumber[n-1]) - 1/2 + Sum[Binomial[n, k]*(-1)^k*Zeta[k], {k, 2, n}]; Reap[ For[n = 1, n <= nmax, n++, If[b[n] < 0 < b[n+1] || b[n] > 0 > b[n+1], Print[n+1]; Sow[n+1]]]][[2, 1]]
CROSSREFS
Sequence in context: A355310 A299476 A077853 * A025721 A298267 A235532
KEYWORD
nonn
AUTHOR
STATUS
approved