OFFSET
1,4
EXAMPLE
prime(1)=2: There is no such product
=> a(1)=0;
prime(2)=3: There is no such product
=> a(2)=0;
prime(3)=5: 2*3=6==1 mod 5
=> i=1, x=2; a(3)=1;
prime(4)=7: 4*5*6==1 mod 7; 2*3*4*5==1 mod 7
=> a(3)=2;
prime(5)=11: 3*4==1 mod 11; 7*8==1 mod 11; 5*6*7==1 mod 11; 3*4*5*6*7==1 mod 11; 6*7*8*9*10==1 mod 11; 2*3*4*5*6*7*8*9==1 mod 11
=> x in {3,7,5,3,6,2}
=> a(5)=6.
MATHEMATICA
f[n_] := Block[{r = Range[2, Prime[n] - 1]}, Sum[Length@ Select[Times @@@ Partition[r, k, 1], Mod[#, Prime@ n] == 1 &], {k, 2, Prime@ n}]]; Array[f, 72] (* Michael De Vlieger, Apr 03 2015 *)
PROG
(R)
library(numbers)
p <- vector()
n <- vector()
NumTup <- vector()
p <- Primes(m)
n <- length(p)
m <- 17 #all primes will be checked up to this number
Piprod <- matrix(0, m, m) #Matrix with zeros
#loop: every ordered combination of products
for (i in 2:m)
for (j in 2:m)
Piprod[j, i] <- ifelse(i<j, prod(i:j), 0)
#loop: checks, if entry is congruent 1
#counts the "1"s in the matrix for each prime
for (i in 1:n)
NumTup[i] <- sum(mod(Piprod[, 1:(p[i]-1)], p[i])==1)
NumTup #vector of the counts of each prime
CROSSREFS
KEYWORD
nonn
AUTHOR
Marian Kraus, Apr 03 2015
STATUS
approved