login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256580
Number of quadruples (x, x+1, x+2, x+3) with 1 < x < p-3 of consecutive integers whose product is 1 mod p.
3
0, 0, 0, 1, 0, 0, 2, 0, 3, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 4, 2, 0, 2, 0, 0, 2, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 4, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 4, 2, 2, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 2, 0, 0, 4, 4, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 4, 0, 2, 2, 0, 0, 4, 4, 0, 4, 2, 0, 0
OFFSET
1,7
COMMENTS
If "quadruples" is changed to "pairs" we get A086937 (for the counts) and A038872 (for the primes for which the count is nonzero).
FORMULA
|T| where T = {x|x*(x+1)*(x+2)*(x+3) == 1 mod p, p is prime, 1 < x < p-3}.
EXAMPLE
p=7, x_1=2, 2*3*4*5 == 1 (mod 7), T={2}, |T|=1;
p=17, x_1=2, 2*3*4*5 == 1 (mod 17), x_2=12, 12*13*14*15 == 1 (mod 17), T={2,12}, |T|=2;
p=23, x_1=5, 5*6*7*8 == 1 (mod 23), x_2=15, 15*16*17*18 == 1 (mod 23), x_3=19, 19*20*21*22 == 1 (mod 23), T={5,15,19}, |T|=3.
PROG
(R)
library(numbers); IP <- vector(); t <- vector(); S <- vector(); IP <- c(Primes(1000)); for (j in 1:(length(IP))){for (i in 2:(IP[j]-4)){t[i-1] <-as.vector(mod((i*(i+1)*(i+2)*(i+3)), IP[j])); Z[j] <- sum(which(t==1)); S[j] <- length(which(t==1))}}; S
CROSSREFS
KEYWORD
nonn
AUTHOR
Marian Kraus, Apr 02 2015
STATUS
approved