login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128144
Expansion of chi(-q)* chi(-q^2)* chi(-q^9)/( chi(-q^3)* chi(q^9)) in powers of q where chi() is a Ramanujan theta function.
4
1, -1, -1, 1, 0, -1, 0, 1, 1, -2, 0, 3, 0, -2, 0, 3, 0, -5, 0, 4, -2, -4, 0, 5, 0, -7, 2, 7, 0, -5, 0, 10, 1, -12, 0, 10, 0, -14, -4, 17, 0, -21, 0, 22, 4, -24, 0, 34, 0, -33, 1, 36, 0, -45, 0, 45, -8, -52, 0, 55, 0, -62, 8, 71, 0, -70, 0, 88, 2, -96, 0, 98, 0, -122, -14, 133, 0, -148, 0, 163, 14, -182, 0, 217, 0, -216
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q)* eta(q^6)* eta(q^36)* eta(q^9)^2)/(eta(q^3)* eta(q^4)* eta(q^18)^3) in powers of q.
Euler transform of period 36 sequence [ -1, -1, 0, 0, -1, -1, -1, 0, -2, -1, -1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, -1, 0, -1, -1, -2, 0, -1, -1, -1, 0, 0, -1, -1, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= (1-v)*(1-v+v^2)*(2*u-u^2)^2 -(u+v-u*v)^2*(u-v)^2.
a(6*n+4)=0. a(6*n)=0 if n>0.
A092848(n) = -a(6*n+2).
A128143(n) = -a(n) if n>0.
A128145(n) = -a(n) if n>0.
MATHEMATICA
A128144[n_] := SeriesCoefficient[((QPochhammer[q]*QPochhammer[q^6] *QPochhammer[q^36]*QPochhammer[q^9]^2)/(QPochhammer[q^3]*QPochhammer[q^4] *QPochhammer[q^18]^3)), {q, 0, n}]; Table[A128144[n], {n, 0, 50}] (* G. C. Greubel, Oct 09 2017 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^6+A)*eta(x^36+A)*eta(x^9+A)^2/ (eta(x^3+A)*eta(x^4+A)*eta(x^18+A)^3), n))}
CROSSREFS
Sequence in context: A256580 A213266 A182038 * A128145 A128143 A292561
KEYWORD
sign
AUTHOR
Michael Somos, Feb 16 2007
STATUS
approved