login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213266
Expansion of psi(q) * psi(q^9) / (psi(q^2) * chi(q^3) * psi(-q^9)) in powers of q where psi(), chi() are Ramanujan theta functions.
2
1, 1, -1, -1, 0, 1, 0, -1, 1, 2, 0, -3, 0, 2, 0, -3, 0, 5, 0, -4, -2, 4, 0, -5, 0, 7, 2, -7, 0, 5, 0, -10, 1, 12, 0, -10, 0, 14, -4, -17, 0, 21, 0, -22, 4, 24, 0, -34, 0, 33, 1, -36, 0, 45, 0, -45, -8, 52, 0, -55, 0, 62, 8, -71, 0, 70, 0, -88, 2, 96, 0, -98
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^3 * eta(q^3) * eta(q^12) * eta(q^18)^3 / (eta(q) * eta(q^4)^2 * eta(q^6)^2 * eta(q^9)^2 * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [ 1, -2, 0, 0, 1, -1, 1, 0, 2, -2, 1, 0, 1, -2, 0, 0, 1, -2, 1, 0, 0, -2, 1, 0, 1, -2, 2, 0, 1, -1, 1, 0, 0, -2, 1, 0, ...].
a(n) = A182038(n) unless n=0. a(6*n) = 0 unless n=0. a(6*n + 4) = 0. a(6*n + 2) = -A092848(n).
EXAMPLE
1 + q - q^2 - q^3 + q^5 - q^7 + q^8 + 2*q^9 - 3*q^11 + 2*q^13 - 3*q^15 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q^2]^3* eta[q^3]*eta[q^12]*eta[q^18]^3/(eta[q]*eta[q^4]^2*eta[q^6]^2*eta[q^9]^2*eta[q^36]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 19 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A) * eta(x^18 + A)^3 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^2 * eta(x^9 + A)^2 * eta(x^36 + A)), n))}
(PARI) q='q+O('q^99); Vec(eta(q^2)^3*eta(q^3)*eta(q^12)*eta(q^18)^3 /(eta(q)*eta(q^4)^2*eta(q^6)^2*eta(q^9)^2*eta(q^36))) \\ Altug Alkan, Mar 20 2018
CROSSREFS
Sequence in context: A092241 A336124 A256580 * A182038 A128144 A128145
KEYWORD
sign
AUTHOR
Michael Somos, Jun 07 2012
STATUS
approved