OFFSET
0,5
COMMENTS
Starting from any sequence a(k) in the first row, define the array T(n,k) of the inverse semi-binomial transform by T(0,k) = a(k), T(n,k) = T(n-1,k+1) -T(n-1,k)/2, n>=1.
Here, where the first row is the nonnegative integers, the array is
0 1 2 3 4 5 6 7 8 =A001477(n)
1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16 1 =A106617(n+8)/TBD
5/16 11/32 3/8 13/32 7/16 15/32 1/2 17/32 9/16
3/16 13/64 7/32 15/64 1/4 17/64 9/32 19/64 5/16
7/64 15/128 1/8 17/128 9/64 19/128 5/32 21/128 11/64
1/16 17/256 9/128 19/256 5/64 21/256 11/128 23/256 3/32.
EXAMPLE
The array of denominators starts:
1 1 1 1 1 1 1 1 1 1 1 ...
1 2 1 2 1 2 1 2 1 2 1 ...
1 4 2 4 1 4 2 4 1 4 2 ...
4 8 1 8 4 8 2 8 4 8 1 ...
2 16 8 16 4 16 8 16 1 16 8 ...
16 32 8 32 16 32 2 32 16 32 8 ...
16 64 32 64 4 64 32 64 16 64 32 ...
64 128 8 128 64 128 32 128 64 128 16 ...
16 256 128 256 64 256 128 256 32 256 128 ...
256 512 128 512 256 512 64 512 256 512 128 ...
All entries are powers of 2.
MAPLE
A213268frac := proc(n, k)
if n = 0 then
return k ;
else
return procname(n-1, k+1)-procname(n-1, k)/2 ;
end if;
end proc:
A213268 := proc(n, k)
denom(A213268frac(n, k)) ;
end proc: # R. J. Mathar, Jun 30 2012
MATHEMATICA
T[0, k_] := k; T[n_, k_] := T[n, k] = T[n-1, k+1] - T[n-1, k]/2; Table[T[n-k, k] // Denominator, {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 12 2014 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Curtz, Jun 08 2012
STATUS
approved