This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209308 Denominators of the Akiyama-Tanigawa algorithm applied to 2^(-n), written by antidiagonals. 12
 1, 2, 2, 1, 2, 4, 4, 4, 8, 8, 1, 4, 8, 4, 16, 2, 2, 1, 8, 32, 32, 1, 2, 4, 4, 16, 32, 64, 8, 8, 16, 16, 64, 64, 128, 128, 1, 8, 16, 8, 32, 64, 128, 32, 256, 2, 2, 8, 16, 64, 64, 128, 64, 512, 512, 1, 2, 4, 8, 32, 64, 128, 16, 128, 512, 1024 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 1/2^n and successive rows are 1,       1/2,   1/4,   1/8,  1/16,  1/32,   1/64, 1/128, 1/256,... 1/2,     1/2,   3/8,   1/4,  5/32,  3/32,  7/128,  1/32,...       = A000265/A075101, the Oresme numbers n/2^n. Paul Curtz, Jan 18 2013 and May 11 2016 0,       1/4,   3/8,   3/8,  5/16, 15/64, 21/128,...              = (0 before A069834)/new, -1/4,   -1/4,     0,   1/4, 25/64, 27/64,... 0,      -1/2,  -3/4, -9/16, -5/32,... 1/2,     1/2, -9/16, -13/8,... 0,      17/8, 51/16,... -17/8, -17/8,... 0 The first column is A198631/(A006519?), essentially the fractional Euler numbers 1, -1/2, 0, 1/4, 0,...  in A060096. Numerators b(n): 1, 1, 1, 0, 1, 1, -1, 1, 3, 1, ... . Coll(n+1) - 2*Coll(n) = -1/2, -5/8, -1/2, -11/32, -7/32, -17/128, -5/64, -23/512, ... = -A075677/new, from Collatz problem. There are three different Bernoulli numbers: The first Bernoulli numbers are  1, -1/2, 1/6, 0,... = A027641(n)/A027642(n). The second Bernoulli numbers are 1,  1/2, 1/6, 0,... = A164555(n)/A027642(n). These are the binomial transform of the first one. The third Bernoulli numbers are  1,   0,  1/6, 0,... = A176327(n)/A027642(n), the half sum. Via A177427(n) and A191567(n), they yield the Balmer series A061037/A061038. There are three different fractional Euler numbers: 1) The first are  1, -1/2, 0, 1/4, 0, -1/2,... in A060096(n). Also Akiyama-Tanigawa algorithm for ( 1, 3/2, 7/4, 15/8, 31/16, 63/32,... = A000225(n+1)/A000079(n) ). 2) The second are 1, 1/2, 0, -1/4, 0,  1/2,... , mentioned by Wolfdieter Lang in  A198631(n). 3) The third are  0, 1/2, 0, -1/4, 0,  1/2,... , half difference of 2) and 1). Also Akiyama-Tanigawa algorithm for ( 0, -1/2, -3/4, -7/8, -15/16, -31/32,... =  A000225(n)/A000079(n) ). See A097110(n). LINKS G. C. Greubel, Table of n, a(n) for n = 0..5049 A. F. Horadam Oresme Numbers, Fibonacci Quarterly, 12, #3, 1974, pp. 267-271. EXAMPLE a(n)= 1, 2, 2, 1, 2,  4, 4, 4,  8,  8, 1, 4,  8,  4, 16, 2, 2,  1,  8, 32, 32, 1, 2,  4,  4, 16, 32,  64, 8, 8, 16, 16, 64, 64, 128, 128, MATHEMATICA max = 10; t[0, k_] := 1/2^k; t[n_, k_] := t[n, k] = (k + 1)*(t[n - 1, k] - t[n - 1, k + 1]); denoms = Table[t[n, k] // Denominator, {n, 0, max}, {k, 0, max - n}]; Table[denoms[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2013 *) CROSSREFS Cf. Second Bernoulli numbers A164555(n)/A027642(n) via Akiyama-Tanigawa algorithm for 1/(n+1), A272263. Sequence in context: A098691 A035364 A261734 * A143808 A294600 A247495 Adjacent sequences:  A209305 A209306 A209307 * A209309 A209310 A209311 KEYWORD nonn,frac,tabl AUTHOR Paul Curtz, Jan 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 19 02:36 EST 2018. Contains 318245 sequences. (Running on oeis4.)