login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209305
Exponential generating function A(x) is the unique solution of the Cauchy problem: A'(x) = exp(x+A(x)^2-1), A(0) = 1.
3
1, 1, 3, 17, 151, 1821, 27675, 507177, 10879247, 267329317, 7403007507, 228096010961, 7739098803559, 286704779800173, 11514881722287051, 498352218891144249, 23120905868853862655, 1144719051552552433525, 60241163501500355522499
OFFSET
0,3
LINKS
FORMULA
E.g.f.: A(x) = inverse_erf((2*exp(x)-2+exp(1)*sqrt(Pi)*erf(1)) / (exp(1)*sqrt(Pi)), where inverse-erf is the inverse of the error function.
a(n) = a(n-1) + 2*sum(C(n-2,k)*a(k)*b(n-2-k), k=0..n-2) for n>0, a(0) = 1, where b(n) = sum(C(n,k)*a(k+1)*a(n-k+1), k=0..n) (A209306).
Limit n->infinity (a(n)/n!)^(1/n) = 1 / log(1 + exp(1)*sqrt(Pi)*erfc(1)/2) = 3.112237454247335904679793089483819785... . - Vaclav Kotesovec, Mar 31 2017
MATHEMATICA
(* Expansion of the generating series *)
A[x_] := InverseErf[(2 Exp[x] - 2 + Exp[1] Sqrt[Pi] Erf[1])/(Exp[1] Sqrt[Pi])];
CoefficientList[Series[A[x], {x, 0, 40}], x] Table[n!, {n, 0, 40}]
(* Recurrences - More efficient *)
a[n_] := a[n] = a[n-1]+2Sum[Binomial[n-2, k]a[k]b[n-2-k], {k, 0, n-2}];
a[1] = 1;
a[0] = 1;
b[n_] := Sum[Binomial[n, k]a[k + 1]a[n - k + 1], {k, 0, n}];
Table[a[n], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jan 18 2013
STATUS
approved