login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209305 Exponential generating function A(x) is the unique solution of the Cauchy problem: A'(x) = exp(x+A(x)^2-1), A(0) = 1. 3
1, 1, 3, 17, 151, 1821, 27675, 507177, 10879247, 267329317, 7403007507, 228096010961, 7739098803559, 286704779800173, 11514881722287051, 498352218891144249, 23120905868853862655, 1144719051552552433525, 60241163501500355522499 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..375

FORMULA

E.g.f.: A(x) = inverse_erf((2*exp(x)-2+exp(1)*sqrt(Pi)*erf(1)) / (exp(1)*sqrt(Pi)), where inverse-erf is the inverse of the error function.

a(n) = a(n-1) + 2*sum(C(n-2,k)*a(k)*b(n-2-k), k=0..n-2) for n>0, a(0) = 1, where b(n) = sum(C(n,k)*a(k+1)*a(n-k+1), k=0..n) (A209306).

Limit n->infinity (a(n)/n!)^(1/n) = 1 / log(1 + exp(1)*sqrt(Pi)*erfc(1)/2) = 3.112237454247335904679793089483819785... . - Vaclav Kotesovec, Mar 31 2017

MATHEMATICA

(* Expansion of the generating series *)

A[x_] := InverseErf[(2 Exp[x] - 2 + Exp[1] Sqrt[Pi] Erf[1])/(Exp[1] Sqrt[Pi])];

CoefficientList[Series[A[x], {x, 0, 40}], x] Table[n!, {n, 0, 40}]

(* Recurrences - More efficient *)

a[n_] := a[n] = a[n-1]+2Sum[Binomial[n-2, k]a[k]b[n-2-k], {k, 0, n-2}];

a[1] = 1;

a[0] = 1;

b[n_] := Sum[Binomial[n, k]a[k + 1]a[n - k + 1], {k, 0, n}];

Table[a[n], {n, 0, 100}]

CROSSREFS

Cf. A026944, A209306, A209307.

Sequence in context: A135750 A286345 A303063 * A182957 A307375 A007767

Adjacent sequences:  A209302 A209303 A209304 * A209306 A209307 A209308

KEYWORD

nonn

AUTHOR

Emanuele Munarini, Jan 18 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 20:10 EDT 2021. Contains 347534 sequences. (Running on oeis4.)