The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209302 Table T(n,k) = max{n+k-1, n+k-1} n, k > 0, read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). 2
 1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 16, 15, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Boris Putievskiy, Rows n = 1..140 of triangle, flattened Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012. FORMULA In general, let m be a natural number. Table T(n,k) = max{m*n+k-m, n+m*k-m}. For the general case, a(n) = (m+1)*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|. For m=1, a(n) = 2*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|. a(n) = t + |t^2 - n|, where t = floor(sqrt(n)+1/2). - Ridouane Oudra, May 07 2019 EXAMPLE The start of the sequence as a table for the general case: 1 m+1 2*m+1 3*m+1 4*m+1 5*m+1 6*m+1 ... m+1 m+2 2*m+2 3*m+2 4*m+2 5*m+2 6*m+2 ... 2*m+1 2*m+2 2*m+3 3*m+3 4*m+3 5*m+3 6*m+3 ... 3*m+1 3*m+2 3*m+3 3*m+4 4*m+4 5*m+4 6*m+4 ... 4*m+1 4*m+2 4*m+3 4*m+4 4*m+5 5*m+5 6*m+5 ... 5*m+1 5*m+2 5*m+3 5*m+4 5*m+5 5*m+6 6*m+6 ... 6*m+1 6*m+2 6*m+3 6*m+4 6*m+5 6*m+6 6*m+7 ... ... The start of the sequence as a triangular array read by rows for general case: 1; m+1, m+2, m+1; 2*m+1, 2*m+2, 2*m+3, 2*m+2, 2*m+1; 3*m+1, 3*m+2, 3*m+3, 3*m+4, 3*m+3, 3*m+2, 3*m+1; 4*m+1, 4*m+2, 4*m+3, 4*m+4, 4*m+5, 4*m+4, 4*m+3, 4*m+2, 4*m+1; ... Row r contains 2*r-1 terms: r*m+1, r*m+2, ... r*m+r, r*m+r+1, r*m+r, ..., r*m+2, r*m+1. The start of the sequence as triangle array read by rows for m=1: 1; 2, 3, 2; 3, 4, 5, 4, 3; 4, 5, 6, 7, 6, 5, 4; 5, 6, 7, 8, 9, 8, 7, 6, 5; 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6; 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7; ... PROG (Python) result = 2*int(math.sqrt(n-1)) - abs(n-int(math.sqrt(n-1))**2 - int(math.sqrt(n-1)) -1) +1 CROSSREFS Cf. A187760. Sequence in context: A064672 A138554 A063772 * A205122 A174863 A064289 Adjacent sequences: A209299 A209300 A209301 * A209303 A209304 A209305 KEYWORD nonn,tabf AUTHOR Boris Putievskiy, Jan 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 08:50 EDT 2024. Contains 372926 sequences. (Running on oeis4.)