OFFSET
1,2
LINKS
Boris Putievskiy, Rows n = 1..140 of triangle, flattened
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
In general, let m be a natural number. Table T(n,k) = max{m*n+k-m, n+m*k-m}. For the general case,
a(n) = (m+1)*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|.
For m=1,
a(n) = 2*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|.
a(n) = t + |t^2 - n|, where t = floor(sqrt(n)+1/2). - Ridouane Oudra, May 07 2019
EXAMPLE
The start of the sequence as a table for the general case:
1 m+1 2*m+1 3*m+1 4*m+1 5*m+1 6*m+1 ...
m+1 m+2 2*m+2 3*m+2 4*m+2 5*m+2 6*m+2 ...
2*m+1 2*m+2 2*m+3 3*m+3 4*m+3 5*m+3 6*m+3 ...
3*m+1 3*m+2 3*m+3 3*m+4 4*m+4 5*m+4 6*m+4 ...
4*m+1 4*m+2 4*m+3 4*m+4 4*m+5 5*m+5 6*m+5 ...
5*m+1 5*m+2 5*m+3 5*m+4 5*m+5 5*m+6 6*m+6 ...
6*m+1 6*m+2 6*m+3 6*m+4 6*m+5 6*m+6 6*m+7 ...
...
The start of the sequence as a triangular array read by rows for general case:
1;
m+1, m+2, m+1;
2*m+1, 2*m+2, 2*m+3, 2*m+2, 2*m+1;
3*m+1, 3*m+2, 3*m+3, 3*m+4, 3*m+3, 3*m+2, 3*m+1;
4*m+1, 4*m+2, 4*m+3, 4*m+4, 4*m+5, 4*m+4, 4*m+3, 4*m+2, 4*m+1;
...
Row r contains 2*r-1 terms: r*m+1, r*m+2, ... r*m+r, r*m+r+1, r*m+r, ..., r*m+2, r*m+1.
The start of the sequence as triangle array read by rows for m=1:
1;
2, 3, 2;
3, 4, 5, 4, 3;
4, 5, 6, 7, 6, 5, 4;
5, 6, 7, 8, 9, 8, 7, 6, 5;
6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6;
7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7;
...
PROG
(Python)
result = 2*int(math.sqrt(n-1)) - abs(n-int(math.sqrt(n-1))**2 - int(math.sqrt(n-1)) -1) +1
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Boris Putievskiy, Jan 18 2013
STATUS
approved