The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209301 Table T(n,k) n, k > 0, T(n,k)=n-k+1, if n>=k, T(n,k)=k-n+2, if n < k. Table read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). 3
 1, 3, 1, 2, 4, 3, 1, 2, 3, 5, 4, 3, 1, 2, 3, 4, 6, 5, 4, 3, 1, 2, 3, 4, 5, 7, 6, 5, 4, 3, 1, 2, 3, 4, 5, 6, 8, 7, 6, 5, 4, 3, 1, 2, 3, 4, 5, 6, 7, 9, 8, 7, 6, 5, 4, 3, 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 8, 7, 6, 5, 4, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 9, 8, 7 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general, let m be natural number. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m} shifts the sequence A000027. For m=1 the result is A004739, for m=2 the result is A004738. This sequence is result for m=3. LINKS Boris Putievskiy, Rows n = 1..140 of triangle, flattened Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012. FORMULA For the general case a(n ) = m*v+(2*v-1)*(t*t-n)+t, where t = floor((sqrt(n)-1/2)+1, v = floor((n-1)/t)-t+1. For m=3 a(n ) = 3*v+(2*v-1)*(t*t-n)+t, where t = floor((sqrt(n)-1/2)+1, v = floor((n-1)/t)-t+1. EXAMPLE The start of the sequence as table for the general case: 1....m..m+1..m+2..m+3..m+4..m+5... 2....1....m..m+1..m+2..m+3..m+4... 3....2....1....m..m+1..m+2..m+3... 4....3....2....1....m..m+1..m+2... 5....4....3....2....1....m..m+1... 6....5....4....3....2....1....m... 7....6....5....4....3....2....1... ... The start of the sequence as triangle array read by rows for the general case: 1; m,1,2; m+1,m,1,2,3; m+2,m+1,m,1,2,3,4; m+3,m+2,m+1,m,1,2,3,4,5; m+4, m+3,m+2,m+1,m,1,2,3,4,5,6; m+5, m+4, m+3,m+2,m+1,m,1,2,3,4,5,6,7; ... Row number r contains 2*r -1 numbers: m+r-2, m+r-1,...m,1,2,...r. The start of the sequence as triangle array read by rows for m=3: 1; 3,1,2; 4,3,1,2,3; 5,4,3,1,2,3,4; 6,5,4,3,1,2,3,4,5; 7,6,5,4,3,1,2,3,4,5,6; 8,7,6,5,4,3,1,2,3,4,5,6,7; ... PROG (Python) t=int((math.sqrt(n))-0.5)+1 v=int((n-1)/t)-t+1 result=k*v+(2*v-1)*(t**2-n)+t CROSSREFS Cf. A187760, A004739, A004738. Sequence in context: A117905 A133445 A139457 * A049992 A227147 A074585 Adjacent sequences: A209298 A209299 A209300 * A209302 A209303 A209304 KEYWORD nonn,tabl AUTHOR Boris Putievskiy, Jan 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 03:42 EDT 2024. Contains 371756 sequences. (Running on oeis4.)