login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209298
E.g.f.: Product_{n>=1} (cos(x^n/n) + sin(x^n/n)).
2
1, 1, 0, 4, 6, 30, 348, 1580, 12516, 114884, 1375776, 12239280, 160067160, 1966619512, 28104385008, 428735710000, 6769181533968, 110402248461840, 2070626881211136, 38342125010072384, 764180537501729376, 16185744192232110560, 354756690964676468160
OFFSET
0,4
COMMENTS
Compare to: Product_{n>=1} (cosh(x^n/n) + sinh(x^n/n)) = 1/(1-x).
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^3/3! + 6*x^4/4! + 30*x^5/5! + 348*x^6/6! +...
where A(x) = (cos(x)+sin(x)) * (cos(x^2/2)+sin(x^2/2)) * (cos(x^3/3)+sin(x^3/3)) * (cos(x^4/4)+sin(x^4/4)) * (cos(x^5/5)+sin(x^5/5)) *...
What is the limit a(n)/n! = ?
Example:
a(1000)/1000! = 0.2942615679517020268...
a(2000)/2000! = 0.2939735835938621667...
a(3000)/3000! = 0.2938768494981674721...
a(4000)/4000! = 0.2938283311328618257...
a(5000)/5000! = 0.2937991678075013564...
a(6000)/6000! = 0.2937797033327244435...
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(Cos[x^n/n] + Sin[x^n/n]), {n, 1, 200}], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jan 03 2018 *)
PROG
(PARI) {a(n)=n!*polcoeff(prod(k=1, n, cos(x^k/k +x*O(x^n))+sin(x^k/k +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A209299.
Sequence in context: A376482 A093121 A248048 * A075590 A088255 A192083
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 17 2013
STATUS
approved