OFFSET
1,3
COMMENTS
From Michel Marcus, May 18 2021: (Start)
The n-th row of the triangle is the main diagonal of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
[1 2 3 4 5]
[1 2 3 4] [6 7 8 9 10]
[1 2 3] [5 6 7 8] [11 12 13 14 15]
[1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]
[1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]
-----------------------------------------------------------
1 1 4 1 5 9 1 6 11 16 1 7 13 19 25
(End)
LINKS
Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
FORMULA
T(n,k) = (k-1)*(n+1)+1.
EXAMPLE
From Muniru A Asiru, Oct 31 2017: (Start)
Triangle begins:
1;
1, 4;
1, 5, 9;
1, 6, 11, 16;
1, 7, 13, 19, 25;
1, 8, 15, 22, 29, 36;
1, 9, 17, 25, 33, 41, 49;
1, 10, 19, 28, 37, 46, 55, 64;
1, 11, 21, 31, 41, 51, 61, 71, 81;
1, 12, 23, 34, 45, 56, 67, 78, 89, 100;
... (End)
MATHEMATICA
Array[Range[1, #^2, #+1]&, 10] (* Paolo Xausa, Feb 08 2024 *)
PROG
(Haskell)
a209297 n k = k * n + k - n
a209297_row n = map (a209297 n) [1..n]
a209297_tabl = map a209297_row [1..]
(GAP) Flat(List([1..10^3], n -> List([1..n], k -> k * n + k - n))); # Muniru A Asiru, Oct 31 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jan 19 2013
STATUS
approved