login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209295
Antidiagonal sums of the gcd(.,.) array A109004.
5
0, 2, 5, 8, 12, 14, 21, 20, 28, 30, 37, 32, 52, 38, 53, 60, 64, 50, 81, 56, 92, 86, 85, 68, 124, 90, 101, 108, 132, 86, 165, 92, 144, 138, 133, 152, 204, 110, 149, 164, 220, 122, 237, 128, 212, 234, 181, 140, 288, 182, 245, 216, 252, 158, 297, 244
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 5000 terms from G. C. Greubel)
FORMULA
a(0) = 0; a(n) = A018804(n) + n for n > 0. [Amended by Georg Fischer, Jan 25 2020]
a(n) = Sum_{d|n} phi(d)*(n/d + 1) for n >= 1. - Peter Luschny, Aug 25 2019
MAPLE
a:= n-> add(igcd(j, n-j), j=0..n):
seq(a(n), n=0..70); # Alois P. Heinz, Aug 25 2019
# Alternative (computes [a(n), n=0..10000] about 25 times faster):
a := n -> add(numtheory:-phi(d)*(n/d + 1), d = numtheory:-divisors(n)):
seq(a(n), n = 0..57); # Peter Luschny, Aug 25 2019
MATHEMATICA
Table[Sum[GCD[n-k, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *)
f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := n + Times @@ f @@@ FactorInteger[n]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Apr 28 2023 *)
PROG
(PARI) a(n) = n + sum(k=1, n, gcd(n, k)); \\ Michel Marcus, Jan 05 2018
(Magma)
A209295:= func< n | n eq 0 select 0 else (&+[(n/d+1)*EulerPhi(d): d in Divisors(n)]) >;
[A209295(n): n in [0..40]]; // G. C. Greubel, Jun 24 2024
(SageMath)
def A209295(n): return sum((n/k+1)*euler_phi(k) for k in (1..n) if (k).divides(n))
[A209295(n) for n in range(41)] # G. C. Greubel, Jun 24 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 17 2013
STATUS
approved