The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004739 Concatenation of sequences (1,2,2,...,n-1,n-1,n,n,n-1,n-1,...,2,2,1) for n >= 1. 5
 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS From Artur Jasinski, Mar 07 2010: (Start) Zeta(2, k/p) + Zeta(2, (p-k)/p) = (Pi/sin((Pi*a(n))/p))*2, where p=2,3,4, k=1..p-1. This sequence is the odd subset of A003983 for odd p=3,5,7,9,.... For the even subset of A003983 see A004737. (End) Table T(n,k) n, k > 0, T(n,k) = n-k+1, if n >= k, T(n,k) = k-n, if n < k.  Table read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). General case A209301. Let m be a natural number. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m} shifts the sequence A000027. For m=1 the result is A004739, for m=2 the result is A004738, for m=3 the result is A209301. - Boris Putievskiy, Jan 24 2013 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732, 2012. F. Smarandache, Collected Papers, Vol. II F. Smarandache, Sequences of Numbers Involved in Unsolved Problems. Eric Weisstein's World of Mathematics, Smarandache Sequences FORMULA From Boris Putievskiy, Jan 24 2013: (Start) For the general case, a(n) = m*v + (2*v-1)*(t*t-n) + t, where t = floor((sqrt(n) - 1/2) + 1 and v = floor((n-1)/t) - t + 1. For m=1, a(n) = v + (2*v-1)*(t*t-n) + t, where t = floor((sqrt(n) - 1/2) + 1 and v = floor((n-1)/t) - t + 1. (End) EXAMPLE From Boris Putievskiy, Jan 24 2013: (Start) The start of the sequence as table:   1, 1, 2, 3, 4, 5, 6, ...   2, 1, 1, 2, 3, 4, 5, ...   3, 2, 1, 1, 2, 3, 4, ...   4, 3, 2, 1, 1, 2, 3, ...   5, 4, 3, 2, 1, 1, 2, ...   6, 5, 4, 3, 2, 1, 1, ...   7, 6, 5, 4, 3, 2, 1, ...   ... The start of the sequence as triangle array read by rows:   1;   1, 1, 2;   2, 1, 1, 2, 3;   3, 2, 1, 1, 2, 3, 4;   4, 3, 2, 1, 1, 2, 3, 4, 5;   5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6;   6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7;   ... Row number r contains 2*r - 1 numbers: r-1, r-2, ..., 1, 1, 2, ..., r. (End) MATHEMATICA aa = {}; Do[Do[AppendTo[aa, (p/Pi) ArcSin[Sqrt[1/((1/Pi^2) (Zeta[2, k/p] + Zeta[2, (p - k)/p]))]]], {k, 1, p - 1}], {p, 3, 50, 2}]; Round[N[aa, 50]] (* Artur Jasinski, Mar 07 2010 *) PROG (Haskell) a004739 n = a004739_list !! (n-1) a004739_list = concat \$ map (\n -> [1..n] ++ [n, n-1..1]) [1..] -- Reinhard Zumkeller, Mar 26 2011 CROSSREFS Cf. A004737, A004738, A004731, A003983, A079813, A187760, A004738, A209301. Sequence in context: A136605 A165621 A284321 * A156282 A203776 A343559 Adjacent sequences:  A004736 A004737 A004738 * A004740 A004741 A004742 KEYWORD nonn,easy AUTHOR R. Muller EXTENSIONS More terms from Patrick De Geest, Jun 15 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 22:40 EDT 2021. Contains 343909 sequences. (Running on oeis4.)