login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203776
Number of partitions of n into distinct parts 5k+1 or 5k+4.
16
1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 3, 3, 2, 2, 3, 5, 5, 3, 3, 5, 7, 7, 6, 5, 7, 11, 11, 8, 8, 12, 15, 15, 13, 12, 16, 22, 22, 18, 18, 24, 30, 31, 27, 26, 33, 42, 43, 37, 37, 47, 57, 58, 53, 52, 63, 78, 80, 71, 72, 88, 103, 106, 99, 98, 116, 139, 142
OFFSET
0,11
COMMENTS
Convolution of A281243 and A280454. - Vaclav Kotesovec, Jan 18 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (first 251 terms from Reinhard Zumkeller)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f( x, x^4) / f(-x^5, -x^10) in powers of x where f() is the Ramanujan two-variable theta function. - Michael Somos, Mar 23 2013
Expansion of (-x; x^5)_oo (-x^4; x^5)_oo in powers of x where (x; q)_oo is the q-Pochhammer symbol. - Michael Somos, Mar 23 2013
Euler transform of period 10 sequence [ 1, -1, 0, 1, 0, 1, 0, -1, 1, 0, ...]. - Michael Somos, Mar 23 2013
G.f.: Product_{k>0} (1 + x^(5*k - 1)) * (1 + x^(5*k - 4)). - Michael Somos, Mar 23 2013
a(n) ~ exp(sqrt(2*n/15)*Pi) / (2*30^(1/4)*n^(3/4)) * (1 + (Pi/(60*sqrt(30)) - 3*sqrt(15/2)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
EXAMPLE
a(10) = #{9+1, 6+4} = 2;
a(20) = #{19+1, 16+4, 14+6, 11+9, 9+6+4+1} = 5.
1 + x + x^4 + x^5 + x^6 + x^7 + x^9 + 2*x^10 + 2*x^11 + x^12 + x^13 + 2*x^14 + ...
q + q^61 + q^241 + q^301 + q^361 + q^421 + q^541 + 2*q^601 + 2*q^661 + q^721 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 + x^(5 k - 1)) (1 + x^(5 k - 4)), {k, Ceiling[ n / 5]}], {x, 0, n}] (* Michael Somos, Mar 23 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^5] QPochhammer[ -x^4, x^5], {x, 0, n}] (* Michael Somos, Mar 23 2013 *)
PROG
(Haskell)
a203776 = p a047209_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
(PARI) {a(n) = polcoeff( prod( k=1, ceil(n / 5), (1 + x^(5*k - 1)) * (1 + x^(5*k - 4)), 1 + x * O(x^n)), n)} /* Michael Somos, Mar 23 2013 */
CROSSREFS
Sequence in context: A284321 A004739 A156282 * A343559 A242357 A120423
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 05 2012
STATUS
approved