OFFSET
1,2
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 72 ).
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in our case, a(n)^2 - 1 == 0 (mod 5). - Bruno Berselli, Nov 17 2010
The sum of the alternating series (-1)^(n+1)/a(n) from n=1 to infinity is (Pi/5)*cot(Pi/5), that is (1/5)*sqrt(1 + 2/sqrt(5))*Pi. - Jean-François Alcover, May 03 2013
These numbers appear in the product of a Rogers-Ramanujan identity. See A003114 also for references. - Wolfdieter Lang, Oct 29 2016
Let m be a product of any number of terms of this sequence. Then m - 1 or m + 1 is divisible by 5. Closed under multiplication. - David A. Corneth, May 11 2018
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
William A. Stein, The modular forms database
Eric Weisstein's World of Mathematics, Determined by Spectrum
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
G.f.: (1+3x+x^2)/((1-x)(1-x^2)).
a(n) = floor((5n-2)/2). [corrected by Reinhard Zumkeller, Jul 19 2013]
a(1) = 1, a(n) = 5(n-1) - a(n-1). - Benoit Cloitre, Apr 12 2003
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = (10*n + (-1)^n - 5)/4.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 5 for n > 2.
a(n) = 5*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n)^2 = 5*A036666(n) + 1 (cf. also Comments). (End)
a(n) = 5*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
E.g.f.: 1 + ((10*x - 5)*exp(x) + exp(-x))/4. - David Lovler, Aug 23 2022
MAPLE
seq(floor(5*k/2)-1, k=1..100); # Wesley Ivan Hurt, Sep 27 2013
MATHEMATICA
Select[Range[0, 200], MemberQ[{1, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
LinearRecurrence[{1, 1, -1}, {1, 4, 6}, 70] (* Harvey P. Dale, Jul 19 2024 *)
PROG
(Haskell)
a047209 = (flip div 2) . (subtract 2) . (* 5)
a047209_list = 1 : 4 : (map (+ 5) a047209_list)
-- Reinhard Zumkeller, Jul 19 2013, Jan 05 2011
(PARI) a(n)=(10*n+(-1)^n-5)/4 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Michael Somos, Sep 22 2002
STATUS
approved