

A047209


Numbers that are congruent to {1, 4} mod 5.


51



1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 101, 104, 106, 109, 111, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 72 ).
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h4)*(1)^nh)/4 (h, n natural numbers), therefore (2*h*n + (h4)*(1)^n  h)/4)^2  1 == 0 (mod h); in our case, a(n)^2  1 == 0 (mod 5).  Bruno Berselli, Nov 17 2010
The sum of the alternating series (1)^(n+1)/a(n) from n=1 to infinity is (Pi/5)*cot(Pi/5), that is (1/5)*sqrt(1 + 2/sqrt(5))*Pi.  JeanFrançois Alcover, May 03 2013
These numbers appear in the product of a RogersRamanujan identity. See A003114 also for references.  Wolfdieter Lang, Oct 29 2016
Let m be a product of any number of terms of this sequence. Then m  1 or m + 1 is divisible by 5. Closed under multiplication.  David A. Corneth, May 11 2018


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
William A. Stein, The modular forms database
Eric Weisstein's World of Mathematics, Determined by Spectrum
Index entries for linear recurrences with constant coefficients, signature (1,1,1).


FORMULA

G.f.: (1+3x+x^2)/((1x)(1x^2)).
a(n) = floor((5n2)/2). [corrected by Reinhard Zumkeller, Jul 19 2013]
a(1) = 1, a(n) = 5(n1)  a(n1).  Benoit Cloitre, Apr 12 2003
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = (10*n + (1)^n  5)/4.
a(n)  a(n1)  a(n2) + a(n3) = 0 for n > 3.
a(n) = a(n2) + 5 for n > 2.
a(n) = 5*A000217(n1) + 1  2*Sum_{i=1..n1} a(i) for n > 1.
a(n)^2 = 5*A036666(n) + 1 (cf. also Comments). (End)
a(n) = 5*floor(n/2) + (1)^(n+1).  Gary Detlefs, Dec 29 2011


MAPLE

seq(floor(5*k/2)1, k=1..100); # Wesley Ivan Hurt, Sep 27 2013


MATHEMATICA

Select[Range[0, 200], MemberQ[{1, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)


PROG

(Haskell)
a047209 = (flip div 2) . (subtract 2) . (* 5)
a047209_list = 1 : 4 : (map (+ 5) a047209_list)
 Reinhard Zumkeller, Jul 19 2013, Jan 05 2011
(PARI) a(n)=(10*n+(1)^n5)/4 \\ Charles R Greathouse IV, Sep 24 2015


CROSSREFS

Cf. A000566, A036666, A003114, A203776, A047336, A047522, A056020, A090771, A175885, A091998, A175886, A175887.
Cf. A005408 (n=1 or 3 mod 4), A007310 (n=1 or 5 mod 6).
Cf. A045468 (primes), A032527 (partial sums).
Sequence in context: A329784 A010387 A010411 * A138812 A332587 A003259
Adjacent sequences: A047206 A047207 A047208 * A047210 A047211 A047212


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Edited by Michael Somos, Sep 22 2002


STATUS

approved



