login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032527 Concentric pentagonal numbers: floor( 5*n^2 / 4 ). 24
0, 1, 5, 11, 20, 31, 45, 61, 80, 101, 125, 151, 180, 211, 245, 281, 320, 361, 405, 451, 500, 551, 605, 661, 720, 781, 845, 911, 980, 1051, 1125, 1201, 1280, 1361, 1445, 1531, 1620, 1711, 1805, 1901, 2000, 2101, 2205, 2311, 2420, 2531, 2645, 2761, 2880, 3001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also A033429 and A062786 interleaved. - Omar E. Pol, Sep 28 2011

Partial sums of A047209. [Reinhard Zumkeller, Jan 07 2012]

From Wolfdieter Lang, Aug 06 2013: (Start)

a(n) = -N(-floor(n/2),n) with the N(a,b) = ((2*a+b)^2 - b^2*5)/4, the norm for integers a + b*omega(5), a, b rational integers, in the quadratic number field Q(sqrt(5)), where omega(5) = (1 + sqrt(5))/2 (golden section).

a(n) = max({|N(a,n)|,a = -n..+n}) = |N(-floor(n/2),n)| = n^2 + n*floor(n/2) - floor(n/2)^2 = floor(5*n^2/4) (the last eq. checks for even and odd n). (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = 5*n^2/4+((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011

G.f.: x*(1+3*x+x^2)/(1-2*x+2*x^3-x^4). [Colin Barker, Jan 06 2012]

a(n) = a(-n); a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>0, a(-1) = 1, a(0) = 0, a(1) = 1, a(2) = 5, n >= 3. (See the Bruno Berselli recurrence and a general comment for primes 1 (mod 4) under A227541). - Wolfdieter Lang, Aug 08 2013

a(n) = Sum_{j=1..n} Sum{i=1..n} ceiling((i+j-n+1)/2). - Wesley Ivan Hurt, Mar 12 2015

EXAMPLE

From Omar E. Pol, Sep 28 2011 (Start):

Illustration of initial terms (In a precise representation the pentagons should appear strictly concentric):

.

.                                             o

.                                           o   o

.                            o            o   o   o

.                          o   o        o   o   o   o

.               o        o   o   o    o   o   o   o   o

.             o   o    o   o   o   o   o   o     o   o

.      o    o   o   o   o   o o   o     o   o o o   o

.    o   o   o     o     o       o       o         o

. o   o o     o o o       o o o o         o o o o o

.

. 1    5        11          20                31

.

(End)

MAPLE

A032527:=n->5*n^2/4+((-1)^n-1)/8: seq(A032527(n), n=0..100); # Wesley Ivan Hurt, Mar 12 2015

MATHEMATICA

Table[Round[5n^2/4], {n, 0, 39}] (* Alonso del Arte, Sep 28 2011 *)

PROG

(PARI) a(n)=5*n^2>>2 \\ Charles R Greathouse IV, Sep 28 2011

(MAGMA) [5*n^2/4+((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011

(Haskell)

a032527 n = a032527_list !! n

a032527_list = scanl (+) 0 a047209_list

-- Reinhard Zumkeller, Jan 07 2012

CROSSREFS

Cf. A000290, A032528, A077043, A195041. Column 5 of A195040. [Omar E. Pol, Sep 28 2011]

Sequence in context: A190743 A110208 A034308 * A212978 A026038 A080957

Adjacent sequences:  A032524 A032525 A032526 * A032528 A032529 A032530

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

New name from Omar E. Pol, Sep 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 07:17 EDT 2018. Contains 316378 sequences. (Running on oeis4.)