login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032527
Concentric pentagonal numbers: floor( 5*n^2 / 4 ).
24
0, 1, 5, 11, 20, 31, 45, 61, 80, 101, 125, 151, 180, 211, 245, 281, 320, 361, 405, 451, 500, 551, 605, 661, 720, 781, 845, 911, 980, 1051, 1125, 1201, 1280, 1361, 1445, 1531, 1620, 1711, 1805, 1901, 2000, 2101, 2205, 2311, 2420, 2531, 2645, 2761, 2880, 3001
OFFSET
0,3
COMMENTS
Also A033429 and A062786 interleaved. - Omar E. Pol, Sep 28 2011
Partial sums of A047209. - Reinhard Zumkeller, Jan 07 2012
From Wolfdieter Lang, Aug 06 2013: (Start)
a(n) = -N(-floor(n/2),n) with the N(a,b) = ((2*a+b)^2 - b^2*5)/4, the norm for integers a + b*omega(5), a, b rational integers, in the quadratic number field Q(sqrt(5)), where omega(5) = (1 + sqrt(5))/2 (golden section).
a(n) = max({|N(a,n)|,a = -n..+n}) = |N(-floor(n/2),n)| = n^2 + n*floor(n/2) - floor(n/2)^2 = floor(5*n^2/4) (the last eq. checks for even and odd n). (End)
FORMULA
a(n) = 5*n^2/4+((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
G.f.: x*(1+3*x+x^2)/(1-2*x+2*x^3-x^4). - Colin Barker, Jan 06 2012
a(n) = a(-n); a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>0, a(-1) = 1, a(0) = 0, a(1) = 1, a(2) = 5, n >= 3. (See the Bruno Berselli recurrence and a general comment for primes 1 (mod 4) under A227541). - Wolfdieter Lang, Aug 08 2013
a(n) = Sum_{j=1..n} Sum{i=1..n} ceiling((i+j-n+1)/2). - Wesley Ivan Hurt, Mar 12 2015
Sum_{n>=1} 1/a(n) = Pi^2/30 + tan(Pi/(2*sqrt(5)))*Pi/sqrt(5). - Amiram Eldar, Jan 16 2023
EXAMPLE
From Omar E. Pol, Sep 28 2011 (Start):
Illustration of initial terms (In a precise representation the pentagons should appear strictly concentric):
.
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o
. o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 11 20 31
.
(End)
MAPLE
A032527:=n->5*n^2/4+((-1)^n-1)/8: seq(A032527(n), n=0..100); # Wesley Ivan Hurt, Mar 12 2015
MATHEMATICA
Table[Round[5n^2/4], {n, 0, 39}] (* Alonso del Arte, Sep 28 2011 *)
PROG
(PARI) a(n)=5*n^2>>2 \\ Charles R Greathouse IV, Sep 28 2011
(Magma) [5*n^2/4+((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
(Haskell)
a032527 n = a032527_list !! n
a032527_list = scanl (+) 0 a047209_list
-- Reinhard Zumkeller, Jan 07 2012
(Python)
def A032527(n): return 5*n**2>>2 # Chai Wah Wu, Jul 30 2022
CROSSREFS
Cf. A000290, A032528, A077043, A195041. Column 5 of A195040. [Omar E. Pol, Sep 28 2011]
Sequence in context: A331133 A110208 A034308 * A212978 A026038 A080957
KEYWORD
nonn,easy
EXTENSIONS
New name from Omar E. Pol, Sep 28 2011
STATUS
approved